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CHAPTER-()

1 (a) Geometric Notations
Q) R" =n—Dimensional real Euclidean space
(i) R*=R=Real line
(iii) € = Unit vector in thei* direction=(0,0,0,...1,...0)
(iv)  ApointxinR"isX=(X,X,.... X, )
(v)  R"={x=(%,%,...x,) € R"|x, >0} =open upper half-space

(vi) A pointinR™ will be denoted as(X,t) =(X,,.... X,,t) , where t is time variable.

(vii)  U,V,W denote open subsets of R" .We writeV ccU ifV <V < U andV is compact
i.e. V is compactly contained in U.
(viii) 0U =boundary of U
U=closure of U =U Lol
(ix) U;=Ux(0T]
x) I; =UT —U; =parabolic boundary of U;
(xi)  B°(x.r)={yeR"|x—y|<r}=open ball inR"with centre x and radius r>0
(xii)  B(x,r)={yeR"|x—y|<r}=closed ball in R"with centre x and radius r>0
(xiii) ~ a(n)=volume of unit ball B(0,1)inR"
%
F(n+lj
2
na (n)=surface area of unit sphere B(0,1)inR"

" " V2
xiv) IfabeR"sta=(a,a,,..a,) andb=(b,b,...b,)thena,b=> ah and|a|:£2afj

i=1
(b) Notations for functions

(i) 1fu:U >R wewriteU(X)=U(X,X,,....X,) wherexeU , u is smooth if u is infinitely
differentiable.
(if) If u, v are two functions, we write U =Vif u, v agree for all arguments

U.=Vmeans u is equal to v.
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(iii)  The support of a function u is defined as the set of points where the function is not zero and
denoted by spt u.

UZ{XG X|f (x)¢o}
(iv) The sign function is defined by

1 if x>0
sgnx =<0 if x=0
-1 if x<0

u” =max(u,0)

u”=-min(u,0)
u=u"—u"
uj=u*+u
V) Ifu:U —>R"
u(x)=(u*(x),...u" (x))(xeU) whereu=(u*,u?,..u")
The function u' is the i component of u

(vi) The symbol j fdS denotes the integral of f over(n—1)dimensional surface ), inR"
>

(vii) The symboII fdl denotes the integral of f over the curve C inR"
C

(viii) The symbol f fdx denotes the volume integral of S over V e R"and X €V is an arbitrary point.
\%

. 1
A fdy = fd
(ix) Averages: 43 y = ) !r) y

=average of f over ball B(x,r)

¢ fds= o[ fds
aB(n,r) nO( aB(n r)
=average of f over surface of ball B(X, r)
(x) A function u:U — R is called Lipschitz continuous if

lu(x)—u(y)|<C|x~-y], for some constant C and all x, y U .We denote

Lip[u]: sup |u(x)—u(y)|
S |

(xi) The convolution of functions f, g is denoted by f =g.
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(c) Notations for derivatives: Suppose u:U —R,xeU

0 au(x) _ it u(x+he)—u(x)
ox;  h=0 h

provided that the limit exists. We denote 24 = byU

2 3

Similarlyu, , = OU_and Uy s __ %Y andin this way higher order derivatives can be
YiOX.0 T OX0X 0%,

defined.
(ii) Multi-index Notation

(@ A vector & of the fora = (al, Oy, an) where each &; is a non-negative integer is called

a multi- index of order|a|=a, + @, +...+ ¢,
(b) For given multi-index & ,define

(04
D%u(x) __u
Q, o
X 1...8xn n
(c) Ifiisanon-negative integer
D'u(x) ={D“u(x),|a| = i}

The set of all partial derivatives of order i.

utsj-{got]

(i) Au=3u,,

=Laplacian of u
=trace of Hessian Matrix.

(iv) LetX,y € RM.ex=(%, Xy, X, ), Y = (V3 Voreons ¥y )
Then we write

D,u =(uxl,...,ux")
D,u=(u,,...u, )

! yn

The subscript x or y denotes the variable w.r.t. differentiation is being taken
(d) Function Spaces

() @cU)={u U—>R|u is continous}
(b) C(U ) {ueC(u)u is uniformly continouson bounded subsets of U |

(c) C* (U :{u:U —>R|u is k timescontinuous differentiable}
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(d)C* (U)={u:C* (U )I D“u is uniformly continuous unbounded subsets of U for all
o <k}
(€) C*(U)={u:U —>RJu is infinitly differentiable}
(ii) C, (U ) means C (U ) has compact support.
Similarly, C; (U)meansC" (U ) has compact support.

(iii) The function u:U — R is Lebsegue measurable over L? if|u], ,, <o

W
”u”Lp(U):(J.|u| dX] 1< p<oo
U

The functionu:U — R is Lebsegue measurable over L~ if||u||Lw(U) <0
o, = esssuplu

(iv)L°(U) :{u U — R|u is Lebsegue measurableover L”}
L (U) :{u U - R|u is Lebsegue measurableover L°°}

() DU, = |0

LP(u LP(U)

Similarly, | D*u

w =[P

L? L*(u)
(vi) Ifu:U — R™ is a vector, whereu = (u*,u?,...,u™) then D*u = {D“u, || = k}
similarly other operator follow.

(e) Notation for estimates:
(i) Big Oh(O)order

We say
f =0O(g) asX = X, provided there exists a constant C such that| f (x)|< C|g(x)|, for all x

sufficiently close to X; .
(i) Little Oh(o) order
We say

f(x)

50

9(x)

f =0(g)asX = X provided XEX
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2 Inequalities

(i) Convex Function

A function T :R" — R is said to convex function if
f(ex+@A—7)y) <z f(X)+@Q—7)f(y)

forall x,yeR" andeach 0< 7 <1.

(ii) Cauchy’s Inequality
2 2

abs%+% (abeR)

(iii) Holder’s Inequality

Letl< p,qSOO;%'i‘é:l, uel®(u),vel(u)

lﬂ |uv|dx < u, p (U) V] @ (U)
(iv) Minkowski’s Inequality
Letl< p<oo,andu,vel®(U), Then|u+V| p () <Julp () +|v],a (L)
(v) Cauchy Schwartz Inequality
Kl <plly (xyer?)
3 Calculus

(a) Boundaries
LetU = R"be open and bounded, k={1,2,...,}
Definitions:
(i) The boundary oU is C* if for each point x° € &U there exists r>0 and aC* function

Y:R™ — Rgych thatu ~ B(X,r)= {x eB(x°r)[x, > Y(Xl""’xnfl)}

Also, AU is analytic if Y is analytic.
(ii) IfU isC", then along 6U , the outward unit normal at any point X, € 9U is denoted by

()= )
(iiii) Let ue C*(U ) then normal derivative of u is denoted by% ~v.Du

(b) Gauss-Green Theorem
LetU be a bounded open subset of R"andoU isC*.u:U — R"and alsou € Cl(U) then

_[uxidx= _[uv‘dS (i=12,..,n)
U ou
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(c) Integration by parts formula
Letu,veC*(U)then

J'uXi vdx = —j uv, dx + I uvv'ds
U U ou

Proof: By Gauss-Green’s Theorem

[,[(uv)x' dx = a.[ (uv)v'ds

Or IUXinX+IUVXi dx = I (uv)v'dS
U ]

ou
Or quivdx:—_[uvxidx+ J' (uv)v'dS
U U ou
(d) Green’s formula
Letu,veC?(U)then

ou
[ dx= | —dS
(|)£Au X 6{ 3y

Proof: jAudx =_[(uXi )X_ dx
J :

Integrating by parts, taking the second function as unity
jAudx = _[ u,v'ds
V] 0

ouU
= J' 6_uds
LoV
Hence proved.
(i) I Du.Dvdx = —J.uAvdx + I N udsS
U U ou 81/
Proof: J' Du.Dvdx = —IuAde + I uDv.vdS
U U ou

= —_[uAvdx+ I u L] dsS (integrating by parts)
U ou 81/

(iii) [ (uAv—vAu) dx = j(uﬂ—va—” S

L\ ov ov

Proof: juAvdx = —_[ Du.Dvdx + J. ﬂudS
V] U ou aV

Similarly,IvAudx:—j Du.Dvdx+Ia—uudS
] ] 128} 81/

subtracting, we get the result.
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(e) Conversion of n-dimensional integrals into integral over sphere
(i) Coarea formula

Letu: R" — R be Lipschitz continuous and assume that for a.e.T € R the level set{x e R"[u(x)=r}

is a smooth and n-1 dimensional surface inR".Suppose also f:R" = Ris smooth and summable.
Then

If|Du|dx=T[ f fds]dr
R e
Cor. Takingu(X)=|x—X,|

Let f :R" > R be continuous and summable then
j fdx=T£ j de]dr

R" 0\ 8B(xo.r)

for each point X, € R" or we can say

d
QP fax|= [ fds
dr(su{,r) X] as(!o,n

for each r>0.
(F) To construct smooth approximations to given functions
Def: IfU = R"is open, given & > 0.We defineu, := {x eU |dist(x,8U ) > £}
Def. Standard Mollifier

Lety € C”(R")such that
1.
cexp if  [x]<1
e el
0if |x|>1

The constant ¢ is chosen so that j ndx =1
Rn

Def. We define

1 (x
n, () ::—nn(—j foreverye >0,
" e
Properties:
(i) The functions?], are C* since77(X)are C* .

. 1 X
i dx=— — (dx
(ii) j ndx=— anﬂ(gj
- J' n(x)dx (by definition of n-tuple integral)
RH

=1



8 Partial Differential Equations

(9) Mollification of a function

If f :U — Ris locally integrable
We define the mollification of f

fFo=n,*finU,

=[n.(x=y)f(V)dy = [ n(y)f(x—y)dy (by definition)
U B(0,¢)

Properties:

M  f7eC”(U,)
(i) f*— f almost everywhere as & — 0
(iiy  1ff €C(U)then f* = f uniformly on compact subset ofU almost everywhere.

Function Analysis Concepts

(i) L” space: AssumeU to be a open subset of R"and1< p <o .If f :U — R is measurable, we
define

p }/p
Il = U|f| de if 1<p<ow
LPU) | \U
esssup|f|if p=oo
U

Transformation from Ball B(X,r)to unit Ball B(0,1)

Let B(,r)be a ball with centre x and radius r and B(0,1) be an arbitrary point of B(X, r')and z be an

arbitrary point of B(O,l) then relation between y and z is y=x+rz.



CHAPTER-1

HEAT, WAVE AND LAPLACE EQUATIONS

Structure

1.1 Introduction

1.2 Method of separation of variables to solve B.V.P. associated with one-dimensional Heat equation
1.3 Steady state temperature in a rectangular plate, Circular disc and semi-infinite plate

1.4 Solution of Heat equation in semi-infinite and infinite regions

1.5 Solution of three dimensional Laplace, Heat and Wave equations in Cartesian, Cylindrical and
Spherical coordinates.

1.6 Method of separation of variables to solve B.V.P. associated with motion of a vibrating string
1.7 Solution of wave equation for semi-infinite and infinite strings

1.1 Introduction

In this section, the temperature distribution is studied in several cases. For finding the temperature
distribution we require to solve the Heat equation with different Boundary Value Problem (B.V.P.),
whereas to find the steady state temperature distribution we require to attempt a solution of Laplace
equation and to obtain motion of vibrating string we find a solution of Wave equation.

1.1.1 Objective
The objective of these content is to provide some important results to the reader like:

(i) Temperature distribution in a bar with ends at zero temperature, insulated ends, radiating ends
and ends at different temperature.

(i) Steady state Temperature distribution in a finite, semi-infinite and infinite plate

(iii) Heat conduction in semi-infinite and infinite bar

(iv)Solution of Heat, Laplace and Wave equation in various cases

1.2. Method of Separation of Variables to solve B.V.P. associated with One Dimensional Heat

Equation

A parabolic equation of the type
ou lau
e —(1)
ox~ kot

k being a dissasivity (constant) and U (X,t) being temperature at a point (X, t) of asolid at time t is known
as Heat Equation in one dimension.
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We now proceed to discuss the method of separation of variables to solve B.V.P., with boundary
conditions:

u(0,t)=0andu(l,t)=0 (2)
and
ou
4(%,0)= f (x) and {_} =v(x) -(3)
ot t=0
Suppose the solution of (1) is
u(xt)=X (x)T(t) (%)
where X(x) is a function of x only and T(t) is a function of t only.
Therefore, we have

ou _dX

— =Tt

ox dx ( )

o’u  d*X

—=—=Tt ..(5
and

6_u — X (X)d_T

ot dt
Inserting (5) into (1), we obtain

d?x 1 dT

T(t =—X(X)—
Dividing both sides by u(x,t)=X(x)T(t),we have
1d?°X 1dT
o T -(6)
X dx® KT dt
Now, L.H.S. of (6) is independent of t and R.H.S. is independent of x, either side of (6) can be equated to

some constant of separation. If constant of separation is p2 , then
1d°X 1dT
— = and ——=
X e " T d

2
or dx)z( —p°X =0 (7)
and %—I— p’kT =0 .(8)

These equations have the solutions

X (x)=ce™+c,e ™ and T(t) = Ae*" -.(9)
In view of (2), (4) implies

u(0,t)=0 =X(0)T(t)=0
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Here, either X(0)=0 or T(t)=0. If T(t) is assumed to be zero identically then u(x,t)=X(x)T(t) is zero
identically, that is the temperature function is zero identically, which is of no interest. Thus, we take
X(0)=0
Similarly, u(l,t)=0 = X(1)T(t)=0 = X(1)=0
Thus, we have
X(0)=X(1)=0 ..(10)
Now, applying (10) on (9), we get
c,+c,=0andce” +ce™ =0
This system has a trivial solution
¢,=¢,=0
and so X(x)=0, then the temperature function becomes zero which is not being assumed.
Now, let p? =0, then (7) and (8) implies

d°X =0 and d—T:O
dx’ dt
= X (x)=cx+c, and T(t)=c ..(11)
Now, applying (10) on (11), we obtain:
¢, =c¢,=0
= X (x)=0

Again, the temperature function becomes zero and is of no interest.

So, assume that the constant of separation is - p2 , SO that

2
ddxf £p?X =0 (12)
dT
— +kp’T =0 ..(13

Solution of (12) is

X (X)=¢, cos px+c,sin px .(14)
In view of (10), (14) implies

X(0)=c,=0and

X(l)=c,sin pl =0

= pl =nz forn =0, n being an integer.

nx
-

For n=0, we have infinite many solutions
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X (X asmm n=12,. .. ...(15
() =a,sin %

Now, for p =n|_”,(13) gives

2
d—T+k(”—”j T=0
dt |
2 _2
or C;—-[+AT 0, where 4, —knl—f

Its general solution is
T(t)=ce™ ..(16)
Combining (15) and (16), we have

u,(xt)=ce™a, sin@ ..(17)

where n =1,2,...

Now, for the general solution, we have

=ib e sin 72X (18)
2.0 I
where b, =a,.c,
giving

Zb sin X = £ (x) .(19)

and{au} :{i{ ~Ab, sin X o ‘“tH
ot o i | o

Z/lb smﬂz (x) .(20)

From (19) and (20), the constant b, can be determined easily and thus, (18) represents the solution of
Heat equation.

1.2.1 Ends of the Bar Kept at Temperature Zero

Suppose we want the temperature distribution u(x,t) in a thin, homogeneous bar of length L, given that
the initial temperature in the bar at time zero in the section at perpendicular to the x-axis is specified by
u(x,0)=f(x). The ends of the bar are maintained at temperature zero for all time. The boundary value
problem modeling this temperature distribution is
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W_22lU (0<x<Lt>0) (1)

u(0,t)=u(L,t)=0 (t>0) (2)

u(x,0)="f(x) (0<x<L) (3)
Putu(X,t)= X (X)T(t) -(4)

into the equation (1) to get
XT'=a’X"T (5)

where primes denote differentiation w.r.t. the variable of the function.

X"(x) _ T'(t)
Then, X (%) = © ..(6)

The R.H.S. of this equation is a function of t only and L.H.S. a function of x only and these variables are
independent. We could, e.g. choose any t, we like, thereby fixing the right side of the equation at a constant

value. The left side would then have to equal this constant for all x. We therefore, conclude that 7 is

constant. But then TT-I- must equal the same constant, which we will designate —A (The negative sign is
a

a convention; we would eventually get the same solution if we used A ). The constant A is called the

separation constant.
Thus, we have
X" T

X aT

giving us two ordinary differential equations
X"+AX =0
T'+4a’T =0

Now consider the boundary conditions. First
u(0,t)=X (0)T (t)=0
= X(0)=00rT(t)=0

If T(t) =0for all t, then the temperature in the bar is always zero. This is indeed the solution if f(x)=0.

Otherwise, we must assume that T(t) is non-zero for some t and conclude that

X(0)=0

U(L.t)=X (L)T (1)=0
-0

Similarly,
= X (L)
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We now have the following problems for X and T
X"+AX =0
X (0) =X (L) =0
and T+1a’T =0
We will solve for X (X) first because we have the most information about X. The problem is a regular

Strum-Liouville Problem on [0,L]. A value for A for which the problem has a non-trivial solution is called
an eigen value of this problem. For such a A , any non-trivial solution for X is called an eigen function.

Case 1: A =0
Then, X "=0,50 X(X)=cx+d,Now X (0)=d =0,s0 X (Xx)=cx. Butthen X (L)=cL=0 =c=0

Thus, there is only the trivial solution for this case. We conclude that 0 is not an eigen value of problem.

Case 2: 41 <0

Write 4 =-K%, with k >0. Then, equation for X(x) is
X"-k*X =0

with general solution
X (x)=ce* +de™

Now, X (0)=c+d=0=c=-d

Therefore, X (x) =ce® —ce™ =c(e” —e™)

Next, X (L) =c(e" —e™)=0

Here, e - 2 0, because kL>0, so c=0. Therefore, there are no nontrivial solutions of the problems if
A <0, and this problem has no negative eigen value.

Case3:1>0
Write 4 =k?, with k>0. The general solution of
X"+k*X =0

is X (X) = ccoskx+d sinkx
Now, X (0)=c=0,s0 X (x)=dsinkx.
Therefore, X (L)=dsinkL=0

To have a non-trivial solution, we must be able to choose d #0.



Heat, Wave and Laplace Equations 15

This require that sin kL = 0, which occurs if kL is a positive integer multiple of 7,
say kL=nr .

Nz

Thus, choose k =—, forn=1,2,...

For each such n, we can choose

Xn(x)zdnsin(nil_xj

n27Z'2
L2

This is a eigen function of the given problem corresponding to the eigen value 1 =k?* =

n’z?

Now, return to the problem for T with 4 = ——, the differential equation is

. n*zfa’T
4=

T E

0

with general solution

—n’z?a’

T,(t)=ae *

n

For each positive integer n, we can get

—n?z%a%

. nzzXx 2
un(x,t)zcnsm(%je Y, wherec,=a,d,

This function satisfies the heat equation and the boundary conditionsu(0,t)=u(L,t)=00nt>0To

satisfy the initial condition for a given n, however, we need
u, (x,0)=c,sin (nLLX) = f(x)

And this is possible only if f (x) is a constant multiple of this sine function. Usually, to satisfy the initial

condition we must attempt a superposition of all the u's:

- —n?7%a’
u(xt)=> c,sin (nil_xje L

n=1

The initial condition now requires that

u(x,0)=f (x)=§;‘cn sin(nil_xj
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Which we recognize as the Fourier sine expansion of f (x) on [0.L]. Therefore, choose the c,'s as the

Fourier sine coefficients of f (x) on [O,L]:

25 _ (nzx
c, :E'c[ f (f)sm(Tjdé

With certain conditions on f (x) this Fourier sine series converges to f (x) for 0 < x < L and the formal
solution of the boundary value problem is

u(x’t):%i“ f (f)Sin(n—fjdg}in(r‘_’i)‘je_nzfzzazt

n=1\ o

Example: As a special example, suppose the bar is kept at constant temperature A, except at its ends,
which are kept at temperature zero. Then,

f(x)=A (0<x<L)

and

L
C, = E.[Asin(@] dx = 2—A(l—cos nz)
Ly L nz
_2A
nz

()

The solution in this case is

—n?za’t

u(xt)= 22—[1—(—1)”}sin(nil_x)e 8

~nr

o _ ~(2n-1)' ra't
4AZ < lsin[(2n Ll)”XJe v

T n=1 2n_

We got the last summation from the preceding line by noticing that 1—(—1)n =0 if nis even, so all the

terms in the series vanish for n even and we need only retain the terms with n odd. This is done by replacing
n with 2n-1, there by summing over only the odd positive integers.

Problems: Solve the following boundary value problem:
2
L M _ 0
ot ox?
u(0,t)=u(L,t)=0 (t>0)
u(x,0)=x(L-x) (0O<x<L)

(0O<x<L, t>0)



Heat, Wave and Laplace Equations 17

26—u_4i (0<x<L,t>0)
ot ox?

u(0,t)=u(L,t)=0  (t>0)

u(x,0)=x*(L-x)  (0<x<L)
3.2—?—32% (0<x<L,t>0)

u(0,t)=u(L,t)=0 (t>0)
u(x,0)=L {1 cos(zfxﬂ (0<x<L)

1.2.2 Temperature in a Bar with Insulated Ends

Consider heat conduction in a bar with insulated ends, hence no energy loss across the ends. If the initial
temperature is given by f (x) then the temperature function is modeled by the B.V.P.

2
a—u:aza—g (0<x<L,t>0)
ot OX
ou ou
0,t)=—(L,t)=0 t>0
Don-L(Ly=0 (>0
u(x,0)=f(x) (0O<x<L)

We will solve foru (x,t), leaving out some details, which are the same as in the preceding problem. Set

u(x,t)=X(x)T(t)

And substitute into the heat equation to get
X1
X aT
In which A is the separation constant. Then,
X"+AX =0
andT'+1a°T =0
as before. Also,
2(0)=X"(O)T(1)-0
implies that X '(0)=0. The other boundary condition implies that X '(L)=0. The other boundary
condition implies that X '(L)=0. The problem for X is therefore
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X"+AX =0 (1)
X'(0)=X'(L)=0 ..(2)

We seek values of A4 for which this problem has non-trivial solutions.
Consider cases on A :
Case1:41=0
The general solution for (1) is
X (x)=cx+d
Since X (O) =0=c, therefore, 0 is an eigen value of (1) with eigen function.

X (x)=constant 0
Case 2: 1 <0
Write 4 =—-k?withk >0. Then, X "—k®X =0, with general solution
X (x)=ce* +de™
Now,
X'(0)=kc—kd=0=c=d [.k>0]
X (X)=c(e™+e™)
Next,
X'(L)=ck(e" —e™)=0
This is zero only if ¢c=0. But this forces X (x) =0, so choosing 4 negative eigen value.
Case 3:1>0
Set 1 =k?, withk >0.Then,
X"+k*X =0
with general solution

X (x) =ccoskx+dsinkx
Now, X'(0)=dk =0
implies that d=0. Then, X (x)=ccoskx.

Next, X '(L)=-cksinkL=0



Heat, Wave and Laplace Equations

19

In order to get a non-trivial solution, we need ¢ = 0, and must choose k so that sinkL =0, therefore

kKL =nz

for n, a positive integer, and this problem has eigen values

2_2
n"z

A=k?= ?; for n=1,2,...
Corresponding to such an eigen value, the eigen function is
X, (x)=c, cos(nil_xj , forn=1,2,...

We can combine case 1 and case 3, by writing the eigen values as
n’z®
L2

1=

for n=0,1,2,...

and eigen functions as
X, (x)=c, cos(nil_xj

This is a constant functions, corresponding to A =0, when n=0.
The equation for T is

. nirfa’m
4+ =

T B

0

When n=0, this has solutions
T, (t) =constant =d,

Ifn=1,2,..., then

—n?7%a?T

T,(t)=de “

Now let

U, (x,t) =constant =a,

—n?z%a’
nzx
and u, (x,t)=a, cos[Tje Y where a, =cd,

Each of these functions satisfies the heat equation and boundary conditions. To satisfy the initial condition,

we must usually attempt a superposition of these functions:

- - —n?z%a’
u(xt)=> u,(xt)=a,+> a, cos(nil_xje v

n=0 n=1
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We must choose the a,'s so that

u(x,0)=a, +Zan cos(nLLXJ= f(x)

This is a Fourier cosine expansion of f (x) on [0,L], so choose

L

aoz%jf(g)df

0

and, for n=1,2,...

i:[ f( cos(nﬁéjdé

The solution is

u(xt) %_(L[f E)dé+— :@f(g)cos( Lé)dgjcos(nijenéat

Example: Suppose the left half of the bar is initially at temperature A and the right half at temperature
zero. Then,

The solution for this temperature distribution is

A 2A&1_ (nz)  (nax) TR
u(x,t)=—+=—> =sin| — |cos| —— |e *
2 7 4%n 2 L

: . (nz) . e " : o
Since sin (%j is zero if n is even and equals (—1)k " if n=2k+1. We may omit all terms of this series in

which the summation index is even, and sum over only the odd positive integers. This is done by replacing
n with 2n-1 in the function being summed. Then,

© n+1 7( n— )2”2a2
u(xt)=2 —AZ ((”“D’”‘Jezét
2 7 t32n-1 L
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Problems:

Solve the following B.V.P.’s:

2
1.8_u=6_121 (O<x<7z,t>0)
ot oX
ou ou

&(o,t)=&(n,t)=0 (t>0)

u(x,0)=sinx  (0<x<mx)

ou ol

2—=4—  (0<x<27,t>0)
ot OX

ou ou
—(0,t)=—(27,t)=0 t>0
S(0)=2(2mt)=0  (t>0)

u(x,0)=x(27—x) (0<x<2r)

3. A thin homogeneous bar of length L has insulated ends initial temperature B, a positive constant. Find
the temperature distribution in the bar.

4. A thin homogeneous bar of length L has initial temperature equal to a constant B and the right end
(x=L) is insulated, while the left end is kept at a zero temperature. Find the temperature distribution in the
bar.

5. A thin homogeneous bar of thermal diffusivity 9 and length 2 cm and insulated has its left end
maintained at temperature zero, while the right end is perfectly insulated. The bar has an initial temperature

given by f (x) =x* for 0<x<2. Determine the temperature distribution in the bar. What is limu(x,t)?

t—o0

1.2.3 Temperature Distribution in a Bar with Radiating End

Consider a thin, homogeneous bar of length L, with the left end maintained at temperature zero, while the
right end radiates energy into the surrounding medium, which also is kept at temperature zero. If the initial
temperature in the bar’s cross section at X is f(x), then the temperature distribution is modeled by the B.V.P.

2
%u:az% (0<x<L,t>0)
X
ou

u(0,t)=0, &(L,t):—Au(L,t) (t>0)
u(x,0)=f(x) (0<x<L)

The boundary condition at L assumes that heat energy radiates from this end at a rate proportional to the
temperature at that end of the bar, A is a positive constant called the transfer co-efficient.

Let u(x,t)=X(x)T(t) to obtain, as before,

X"+ AX =0
T'+1a’T =0
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Since,

u(0,t)=X(0)T(t)=0, then

X (0)=0
as T(t)=0, implies thatu(x,t)=0which is possible only if f(x)=0. The condition at the right end of
the bar implies that

X'(L)T (t)=—AX (L)T(t)

= X'(L)+AX (L)=0
The problem for X (x) is therefore,

X"+ AX =0

X (0)= X '(L)+AX (L)=0

From the strum-Liouville theorem, we can be confident that this problem has infinitely many eigen values
2, A4,..., €ach of which is associated with a non-trivial solution, or eigen functions, X, (x). We would

like, however, to know these solutions, so we will consider cases:

Cases1: 1 =0,
Then, the solution for X (x) is
X (x)=cx+d
Since, X (0)=0=d, then
X (x)=cx
But then
X'(x)=c=—AX (L)=—AcL
Then,
¢(1+AL)=0

But 1+ AL >0, so c=0 and we get only the trivial solution from this case. This means that O is not an eigen
value of this problem.
Case 2: A <0, write A =—k?, with k >0.Then,

X"-k*X =0, S0

X (x)=ce +de™
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Now, X (0)=c+d=0=d=-c.

- X (x)=c(e” —e™)=2csinh (kx)

Then, X'(L)=2ckcosh(kL)=—Acsinh(kL)

To have a non-trivial solution, we must have ¢ # 0 and this requires that
2k cosh (kL )+ Asinh(kL)=0

This is impossible because Lk >0, so the left side of this equation is a sum of positive numbers. Therefore,
this problem has no negative eigen value.

Case 3: 1 >0, write A =k? with k >0. Then,
X"+k*X =0, S0
X (x) =ccoskx+d sinkx
Now, X (0)=c=0,50 X (x)=dsinkx.
Further, X'(L)+AX (L)=dkcos(kL)+Adsin(kL)=0
To have a non-trivial solution, we must have d = 0, and this requires that
kcos(kL)+ Asin(kL)=0
ortan(kL):_—k
A

Let z =KL . Then, this equation is

tan(z)zA—E

2
Since k :5, then A4, :Z—’;
L L

is an eigen value of this problem for each positive integer n which is shown in Figure below,

| 1
| |
| 1
I I
| 1
| 1
|
|
|

My ===
[ 15—
5

lu|‘§1 ==

Figure: The eigen values of the problem for a bar with radiating ends with corresponding eigen function
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. [ Z.X
X, (x)=4a, sm[”Tj

The equation for T is

c

T+ ¥ =0

2.2
—a‘zt

So T,(t)=de v

For each positive integer n, let

—a%z%t

- (z.x) =5
un(x,t)zcnsm(LLje Y wherec, =ad,

Each such function satisfies the heat equation and the boundary conditions. To satisfy the initial
conditions, let
—a,z2t
)

u(x,t):icnsin(znx
n=1 I—
we must choose the C, 'S so that
u(x,O)zicn sin(zl”_xj: f(x)
n=1

Unlike what we encountered in the other two examples, this is not a standard’s Fourier series, because of

the Z,'S. Indeed, we do not know these numbers, because they are solutions of a transcendental equation
we cannot solve exactly.

At this point we must rely on the Strum- Liouville theorem, which states that the eigen functions of the
Strum- Liouville problem are orthogonal on [0,L] with weight function 1. This means that if n and m are
distinct positive integers, then

L

Isin ( mejsin ( ZnX]dx =0

) L L
This is like the orthogonality relationship used to derive co-efficient of Fourier series and can be exploited
in the same way to find the

L
If(x)sin(znxjdx
_ 0 L
n L
J.sinz(znx)dx
5 L

With this choice of co-efficient, the solution is

C
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J. ( jdf 7 % —a%z2t
0 sin(Lje L
L

O3

js.n (5]

Problems:
1. Athin, homogeneous bar of thermal diffusivity 4 and length 6 cm with insulated sides, has its end
maintained at temperature zero. Its right end is radiating (with transfer co-efficient %) into the

surrounding medium, which has temperature zero. The bar has an initial temperature given by
f(x)=x(6-x) . Approximate the temperature distribution u(X,t) by finding the fourth partial

sum of the series representation for u(x,t).

1.2.4 Heat Conduction in a Bar with Ends at Different Temperature

Consider a thin, homogeneous bar extending from x =0 to x = L. The left end is maintained at constant
temperature T, and the right end at constant temperature T, . The initial temperature throughout the bar in
the cross-section at xis f (x).

The boundary value problem for the temperature distribution is:

ou 262
a
u(O,t)=Tl , u(L,t) =T, (t>0)
u(x,0)=f(x) (0<x<L)

> (0<x<L,t>0)

Put u(x,t) = X (x)T (t) into the heat equation to obtain,
X"+AX =0
T'+4a’T =0
Unlike the preceding example, there is nothing in this partial differential equation that prevents separation

of the variables. The difficulty encountered here is with the boundary conditions which are non-
homogeneous (u(0,t) and u(L,t) may be non-zero). To see the effect of this consider,

u0,t) = X@O)T(t)=T,

If T,=0, we could conclude that X (0)=0. But if T, #0, this equation forces us to conclude that

T = XT(10) = constant . This is a condition, we cannot except to satisfy. The boundary condition at L

possess the same problem.
We attempt to eliminate the problem by perturbing the function. Set
u(x,t) =U(x,t) +w(x)
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We want to choose /(x) to obtain a problem, we can solve.

Substitute u(x,t) into the partial differential equation to get

a_u — 2 azu 2 n

=a"— +a X
o 52 Fave)
We obtain the heat equation for U if y"(x) =0. Integrating twice, w(x) must have the form
w(X)=Cx+D ..(1)

Now, consider the boundary conditions, first

u(0,t) =T, =U(0,t) +(0)
This condition becomes U (0,t) =0 if we choose y(x) so that

w(0)=T, -(2)
The condition

u(L,t)=T, =U(L,t)+w(L)
becomesU(L,t) =0 if

w(L)=T, -(3)
Now, use (2) and (3) to solve for C and D in (1),

y(0)=D=T,
and (L) =CL+T, =T, =C =%(T2 1)

Thus, choose

w(X)= % (T, =T)x+T,

with this choice, the boundary value problem for U (x,t) is

ou o
—=a

ot Ox?

U.t)=U(L,t)=0

Ux0) =u(x,0) -y () = F ()~ (T, ~T)x-T,

We have solved this problem earlier, with the solution

22t

U (x,1) :%zm f@)-L(, —Tl)x+T}sin(¥)d§}in(nLLx)e—n -

n=1\_o

Once, we know this function, then

u(x,t) :U(x,t)+%(l'2 -T)X+T,
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1.3 Steady-State Temperature in Plates
The two-dimensional Heat equation is

2 2
a—u:a2 8—l;+6—l: =a’vVau
ot oxE oy

The steady-state case occurs when we set aat_u =0. In this event, the Heat equation is Laplace’s equation

Viu=0

A Dirichlet problem consists of Laplace’s equation, to be solved for (x,y) in a region R of the plane,
together with prescribed values the solution is to assumes on the boundary of R, which is usually a
piecewise smooth curve. If we think of R as a flat plate, then we are finding the steady-state temperature
distribution throughout a plate, given the temperature at all timers on its boundary.

1.3.1 Steady-State Temperature in a Rectangular Plate

Consider a flat rectangular plate occupying the region R in the xy-plane by 0<x<a, 0<y <h. Suppose

the right side is kept at constant temperature T, while the other sides are kept at temperature zero. The
boundary value problem for the steady-state temperature distribution is:

Viu=0(0<x<a0<y<h)
u(x,0)=u(x,b)=0 (0<x<a)
u@0,y)=0 (0<y<b)
u(@dy)=T (0<y<b)

Put u(x, y) = X (x)Y (y) into Laplace’s equation to get

X"Y +Y"X =0
Y
X Y

Since the left side depends only on x and the right side only on y, and these variables are independent,
both sides must equal the same constant.

X" Y"
—=——=A(sa
X v (say)

Now, use the boundary condition:
u(x,0)=X(x)Y(0)=0=Y(0)=0
u(x,b)=X(x)Y(()=0=Y()=0

andu(0, y) = X (0)Y(y) =0= X (0) =0

Therefore, X (x) must satisfy
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X"-AX =0
X(0)=0
and, Y must satisfy
Y"+AY =0
Y(©0)=Y(b)=0
This problem for Y (y) was solved in the article (Ends of the bar kept at temperature zero) with X (x) in

place of Y (y)and L in place of b.

The eigen values are

2 2
nz
A=

n bZ

with corresponding eigen functions

Y,(y)=Db,sin (?j forn=1,2,...

The problems for X is now

2_2
X"—”b’: X =0
X (0)=0

The general solution of the differential equation is

nzx —NzX

X (X)=ce® +de ®

Since X(0)=c+d =0=d =—c and so
Xn(x)zc{eb—e b }:ZCnsinh(%j

For each positive integer n, let

u.(x,y)=a, sinh[nngsin(nﬁyj ; wherea, =2b.C,

For each n and any choice of the constant @, this function satisfies Laplace’s equation and the zero

boundary conditions on three sides of the plate. For the non-zero boundary condition, we must use a
superposition

u(ay)=T= iam sin (%jsinh (?j
n=1
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This is a Fourier sine expansion of T on [a,b]. Therefore, choose the entire co-efficient

. (n
sin (%yj as the Fourier sine co-efficient:

a smh( . j J.Tsm( byjdy

= 2%[1_(_1)"}11

nz
in which we have used the fact that cosnz =(-1)", if n is an integer.

We now have

The solution is

u(x,y) = 27: i%[l—(—l)"}sinh(%jsin(%j
b

"= nsinh

As we have done before, observe that 1—(-1)" equals 0 if n is even, and equals 2 if n is odd. We can

therefore omit the even indices in this summation, writing the solution as:

4T & 1 @2n-Dzx)\ . ((2n-Dry
u(x,y)=— “Z-;(Zn 1)Smh((2n 1)7,a)3'”h[ - jsm( - j
b

Problems: 1. Solve for the steady-state temperature distribution in a flat plate covering the region
0<x<a, 0<y<Dh,Iif the temperature on the vertical sides and the bottom side are kept at zero while the

temperature on the top side is a constant K.

2.Solve for the steady-state temperature distribution is a flat plate covering the region 0<x<a, 0<y<b,
if the temperature on the left side is a constant T, and that on right side a constant T, , while the top and
bottom sides are kept at temperature zero.

[Hint: Consider two separate problems. In the first, the temperature on the left side is T, and the other

sides are kept at temperature zero. In the second, the temperature on the right side is T, , while the other
sides are kept at zero. The sum of solutions of these problems is the solution of the original problem.]
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Remark: It is possible to treat the case where the four sides are kept at different temperature (not
necessarily constant), by considering four plates, in each of which the temperature is non-zero on only
one side of the plate. The sum of the solutions of these four problems is the solution for the original plate.

1.3.2 Steady-State Temperature in a Circular Disc

Consider a thin disk of radius R, placed in the plane so that its centre is the origin. We will find the steady-
state temperature distribution u(r, &) as a function of polar co-ordinates. The Laplace’s equation in polar

co-ordinates is

o°'u 1lou 1 &u
— e —t ===
or* ror r?oe
forO<r<Rand —z<60<nx
Assume that the temperature is known on the boundary of the disk:

u(R,0)="f(0) for -z<O<x

In order to determine a unique solution for u, we will specify two additional conditions, First we seek a
bounded solution. This is certainly a physically reasonable condition. Second we assume periodically
conditions:

u(r,z)=u(r,-z) and Z—Z(F,E)I%(r,—ﬂ')

These conditions account for the fact that (r, ) and (r,—x) are polar co-ordinates of the same point.

Attempt a solution
u(r,0) = F(r)G(9)

Substitute this into the Laplace’s equation, we get
F"(r)G(9) +% F'(r)G(O) +r—l2 F(r)G"(@)=0

If F(r)G(@) =0, this equation can be written

r’E"(N+rF'(r) _ G"(9)
F)  G(O)

Since the left side of this equation depends only on r and the right side only on &, and these variables are
independent, both sides must equal same constant

FPE"(N+rE'(r) _ G"(O) _ 1
Fo) GO

which gives
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FPE"(r)+rF'(r)-AF(r) =0 ..(1)
and G"(6)+1G(#)=0

Now, consider the boundary conditions. First
u(r, ) =u(r,—z) = G(7)F(r) =G(-7)F(r)

Assuming F(r) is not identically zero, then
G(7) =G(-x)

Similarly,
2 (1 7) =F (N6 (1) =2 (r,-7) = F(NG'(-7)
= G'(r)=G'(-7)

The problem to solve G(@) is therefore
G"(@)+4AG(0)=0
G(7)=G(-n) -(2)
G'(n)=G'(-x)

This is a periodic Strum-Liouville problem and first we solve it by considering different cases:

Casel: 1=0

In this case, the equation reduces to
G"(0)=0

with the general solution
G(0)=c+do

Now,

G(7r)=G(—r)=c+dr=c—-dr=2dz =0
=d=0
~G(O)=c

which satisfies G'(7) =G'(-x)

Thus, 4 =0 is an eigen value of the problem with eigen function
G(#) = c, = constant

Case 2: 41 <0

Let A=-n’

Then, the differential equation (2) is



32 Partial Differential Equations

G"(0)-n’G(8) =0
with the general solution given by
G(0) =ce™ +de™
Now,
G(r)=G(-7)=>ce™ +de™™ =ce™™ +de™
.G@)=c(e”+e™)=c-d=0=c=d
Also,

G'(r)=G'(-7r)=cn(e™ —e ™) =cn(e™™ —e"™)
=2tn=0=c=0
~G(O)=0

Thus, we have no eigen value in this case.
Case3: 1>0
Let A =k?. Then, the differential equation (2) is
G"(0)+k’G(9)=0
with the general solution given by
G(#) =ccos(kd) +d sin(kd)
Now,

G(7n)=G(-r) = ccos(kz) +dsin(kz) = ccos(kz) —d sin(kr)
= 2dsin(kz)=0

For a non-trivial solution, we take

kz=nz forn=1,2...
=k=n forn=12...

Similarly, result holds for G'(z) =G'(-x)
Thus, the general solution is given by
G, (0) =c, cos(nd) +d, sin(nd)
Thus, the eigen values for the SLBVP (2) is
A=n%;n=0,1,23...

and the eigen function is



Heat, Wave and Laplace Equations 33

C""0 )= Co
G, (@) =c, cos(nd)+d, sin(nd)

Now, let A =n? to get (1) as
rF"()+rF(r)-n’F(r)=0
This is a second order Euler differential equation with general solution

F.(r)=ar"+br" , forn=1,23...
and F,(r) =a, =constant , for n=0

The requirement that the solution must be bounded forces to choose eachb, =0 because
r" — oo as r — 0" (centre of the disk).

Combining cases, we can write
F(r)=ar" for n=0,12...
For n=0,1,2..., we now have functions of the form
u(r,d)=F (rG,(#)=ar" [cn cos(nd) +d sin(n@)]
Setting A, =a,c, and B, =a,d,, we have
u,(r,8) =r"[A, cos(nd) + B, sin(nd)]

These functions satisfy Laplace’s equation and the periodicity conditions, as well as the condition that
solutions must be bounded. For any given n, this function will generally not satisfy the initial condition

u(R,0)= ()

For this, use the superposition
u(r,0) = A, + i r"[A, cos(nd) + B, sin(nd)]
n=1
Now, the initial condition requires that
u(R,0)=1(0)=A +i[A1R” cos(nd) + B, R" sin(ne)]
n=1
This is the Fourier series expansion of f (@)on [-x, z]. Thus, choose

1 Va
AO:EJ;f(H)dG

AR" =1j f(e)cosnedezAFinj f (6) cosndd o
T 7R" 7

and Banzlj f (8)sinnodo = Bn:inj f (8)sinnodo
T 7RY <
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Example: As a specific example, suppose the disk has radius 3 and that f(6)=2+6. A routine
integration gives

A, =2, A =0 for n=1,2,3...

and B, = Lﬂ(—l)n+1
n.3
The solution for this condition is

u(r, 0) =2+23(—1)“+1(£j sin(ng)
n=1 n 3
forO<r<3 and —z<0<nr.
Problems:

1. Find the steady-state temperature for a thin disk

i. of radius R with temperature on boundary is f (@) =cos*@ for -z <0<n

ii. of radius 1 with temperature on boundary is f(8)=cos’@ for -7 <0<nr

iii. of radius R with temperature on boundary is constant T.

2. Use the solution of steady-state temperature distribution in a thin disk to show that the temperature at
the centre of disk is the average of the temperature values on the circumference of the disk.

[Hint: For temperature on the centre of disk, we let r — 0%, so that u(r,0) = A, = ZL I f(6)do
72. /2

which is the average of f (@), the temperature on the circumference of the disk.]
3. Find the steady-state temperature in the flat wedge-shaped plate occupying the region

0<r<k, 0<@<a (in polar co-ordinates). The sides # =0 and & = & are kept at temperature zero and
the ark r =k for 0 <8 <« s kept at temperature T.

[Hint: The BVP for this situation is
ou 1lou 1 o«

P R
o ror r°of
u(r,0)=u(r,a)=0 (0<r<Kk)

uk,0)=T (0<0<a)
1.3.3 Steady-State Temperature Distribution in a Semi-infinite Strip

Find the steady-state temperature distribution in a semi-infinite strip x>0, 0<y <1, pictured in figure.

The temperature on the top side and bottom side are kept at zero, while the left side is kept at temperature
T.

The boundary value problem modelling this problem is:
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o’u  ou

5g+%7—0 (0<y<1,x>0)
u(x,0)=0=u(x,1) (x=>0)
u(0,y)=T (0<y<)

Put u(x,y) = X (x)Y (y) into Laplace’s equation to get

XY Xy =0 = 220
X Y

Since the left side depends only on x and right side only on x, and these variables are independent, both
sides must equal the same constant:

X_z__Y =1
X Y

Now, use the boundary conditions:
u(x,0)=X(x)Y(0)=0=Y(0)=0
u(x,)=Xx)Y()=0=y@®) =0

Therefore, X must satisfy
X"-AX =0
and, Y must satisfy

Y'Y =0
Y(0)=Y(1)=0

The solution for the equation for Y (y) is given by (by above article)
Y, (y)=a,sin(nzy) forn=12,..
with the eigen value given by
A, =g
The problem for X (x) is now
X"-n’z*X =0
The general solution of the differential equation is
X, (xX)=be"™ +ce™
Now, since U(X, y) <o, s0b, =0, otherwise X, (X) —> o0 as X —> 0. Thus, we have

X, (x)=ce™
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Thus, solution for each n is
u,(x,y)=d e "™ sin(nzy) , whered =a.c,
For each n, using the superposition, we have

u(x,y) =Y d,e " sin(nzy)

n=1

We want to choose the constant dn , SO that

u@,y)=T= idn sin(nzy)

n=1

which is Fourier sine expansion of T on [0,1]. Therefore, choose the entire co-efficient of sin(nzy) as the
Fourier sine co-efficient:

1
d,= ZJT sin(nzy)dy
0 [As in above article]
2Ny ]

nr
Problem:

1. Find a steady-state temperature distribution in the semi-infinite region 0< x < a, y >0 if the temperature
on the bottom and left sides are at zero and the temperature on the right side is kept at constant T.

2. Find the steady-state temperature distribution in the semi-infinite region0<x<4,y>0if the

temperature on the vertical sides are kept at constant T and temperature on the bottom side is kept at
zero.

[Hint: Assume two semi-infinite regions, first with left end at temperature T and right end and bottom
at temperature zero, second with right end at temperature zero and left end and bottom at temperature
zero. Sum of these two solutions is the solution of the original problem.]

3. Use your intuition to guess the steady-state temperature in a thin rod of length L if the ends are perfectly
insulated and the initial temperature is f(x) for 0 <x < L.

[Hint: The boundary value problem modelling this problem is
ot ox°
Yon=0=-2Ly (>0
OX OX

=0 (O<x<L) (t>0)

u(x,0) = f(x) (0<x<L)
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1.3.4 Steady-State Temperature in a Semi-infinite Plate

The B.V.P. is
o’u  d%u
—_— =
x> oy?
u(x,0) =0=u(x,b) (x>0)
u©,y)=T (0<y<h)

0 (O0<y<h, x>0

Put u(x,y) = X(x)Y(y) into the given Laplace equation, we obtain

XY 4 XY =0 > oY
X Y

Since the left side is depend on X only while right hand side is Yy only. So both side must be equal to
some constant. Let the constant of separation coefficient is A . The above equation becomes

X"-AX =0 and Y"+AY =0

u(x,0)= X (X)Y(0)=0 =Y (0) =0

And the boundary condition u(x,b) =X (x)Y (b) =0 =Y (b) =0

Here we have more information for problem Y with equations
Y"+1=0
Y(0)=0 and Y(b)=0

In earlier article, we solve such problem and preceding like that, we have solution

Y, =a, sin(%} forn=12,3...

nz

b®

with the eigen value 4, =

Now the problem for X is

2_2
nz

b2

The general solution is

X "— X =0

nzX nzx

X ()=beb +ce ®

For a bounded solution in the given domain, we have to assumeb, =0. Now the solution becomes

nzX

X, (X) = Cne_T . Thus the solution for each n by using the superposition is
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u(x,y)=>de ° sin (%j where d, =a,c,
=1
Now using the condition u(0,T) =T, we have

u@,y)=T :Zdnsin(?j which is a Fourier sine expansion of T on [0,1]. The
n=1

coefficient

>

—NzX

u(x, y) = i:Z—T[l—(—l)”}sin(%y]e b

N

1.3.5 Steady-State Temperature in an Infinite Plate

Suppose we want the steady-state temperature distribution in a thin, flat plate extending over the right
quarter plane x>0,y >0. Assume that the temperature on the vertical side x =0 is kept at zero, while

the bottom side y =0 is kept at a temperature f (x).
The BVP modelling this problem is:
2 2
a—l:+a—l::0 (x>0,y>0)
ox~ oy

u@0,y)=0 (y>0)
u(x,0)=f(x) (x>0)

Now solving as in previous examples we get
u(x, y) = j ¢, sin(kx)e ¥ dk
0
Finally, we require that
u(x,0) = f(x) = j ¢, sin(kx)dk
0
This is the Fourier sine integral of f (x) on [0,0), SO choose
2% .
¢ == f(&)sin(k&)dé
4 0

Thus, the solution for the problem is
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u(x, y) = TET f (§)sin(k§)d§}sin(kx)e"ydk

Example: Assume that in the above problem

4, 0<x<2
f(x)= ’
0, x>2

Then,
c, =2 [ t(@)sinkeaz
4 0

= gT4sin(k§)d§
4 0
8
= g[l—cos(Zk)]
Thus,

u(xy) =2 [ [M}sin(kx)ekydk
Ty k

1.4 Heat Equation in Unbounded Domains

Here, we will discuss the problems of temperature distribution in a bar with the space variable extending
over the real line or half line.

1.4.1 Heat Conduction in a Semi-Infinite Bar

Suppose we want the temperature distribution in a Bar stretching from O to o along the x-axis. The left
end is kept at temperature zero and the initial temperature in the cross-section at X is f (x) .

The boundary value problem for the temperature distribution is:

au  ,oU
— =a" —
ot ox?
u(x,0)=f(x) (x>0)
u(0,t)=0 (t>0)

(x>0,t>0)

As usual, we seek a solution, which is bounded.
Set,

u(x,t) = X(x)T (t) to get

X"+AX =0 (x>0)

T'+1a’T =0 (t>0)

Now as in previous examples, we get
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u(x,t) =d, sin(kx)e***, where d, =a,b,

Now, using the superposition
u(x,t) = j d, sin(kx)e **dk (1)
0
Finally, we must satisfy the initial condition:

f(x) =u(x,0) =Tdksin(kx)dk (2

For this choice the d, 'Sare the Fourier sine integral co-efficient of f (x); so

4, =2 [ t(@)sinke)ds
T

With this choice of the co-efficient, the function defined by (1) is a solution of the problem.

Example: Suppose

f(X):{ﬂ_X L 0<x<rx
0 , X> 7

Then, d, =3T(ﬂ—§)sin(k§)d§ =3(1
Ty

B sin(kn)j
k kr

The solution is

u(x,t) = 75(1— Siné;”)jsin(kx)ekz”ztdk

0

1.4.2 Heat Conduction in Infinite Bar
Suppose we want the temperature distribution in a Bar stretching from —oo to coalong the x-axis. The
initial temperature in the cross-section at x is f (x) . The boundary value problem for the temperature
distribution is:
ou 04
—=a —
ot OX
u(x,0)=f(x) (—o<x<x)

(-0 < X< 0,1 >0)

There are no boundary conditions, so we impose the physically realistic condition that solutions should
be bounded. As usual, we seek a solution, which is bounded.

Set,
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u(x,t) = X(x)T(t) to get
X"+AX =0 (—0< X< o)
T'+1a’T =0 (t>0)

Now as in previous examples, we get
u, (x,t) = (a, cos(kx) +b, sin(ka))e =",

that satisfy the Heat equation and are bounded on the real line over all k>0. Now, using the superposition
u(x,t) = j (a, cos(kx) + b, sin(kx))e **dk (1)
0
Finally, we must satisfy the initial condition:

f(x) =u(x,0) :T(ak cos(kx) + b, sin(kx))dk ..(2)

For this choice the a,'S andb, 'S are the Fourier sine integral co-efficient of f(x); so

a =1 [ f@oos(kaas
T —o0
and
a, == [ 1(&)sinke)d
73 —00

With this choice of the co-efficient, the function defined by (1) is a solution of the problem.
1.5 Solution of Heat, Laplace and Wave Equations
1.5.1 Solution of Three-Dimensional Heat Equations in Cartesian co-ordinates

It is a partial differential equation of the form:

(1)

ou L, du o°u

—=h st oot o2

ot ox® oy® oz

To find its solution by the method of separation of variables, suppose that the solution of (1) is
u(x,y,z,t) = X(X)Y (y)Z(2)T (1) ..(2)

where X (x) is a function of x only,Y (y) is a function of y only, z(z) is a function of z only and T (t) is
a function of t only.

We get on separating the variables

1d?X 1d% 1d°Z 1 dT

1ax, 1dv 1d2_1dr 3
X 0 YdyP Y dZ T dt ®)
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Choosing the constant of separation such that

1d’X  ,1d¥yY  ,1d°Z

1 2 ldY o, 1dZ 9 1 dT
X dx Py dy?> Pe 7 62

=p; and o~ =—p’where p’ = b + p;+p;

Thus, we have the following three equations

O:;TZ(WL p>X =0
C;;Z +pY =0
?13 +psZ=0
%—I+ p°h°T =0

with the solutions
X (x) = Acos p,x+ Bsin p,x
Y(y)=Ccos p,y+Dsinp,y
Y (y) = Ecos p,z+ Fsin p,z

T(t) =Ge "Mt = Ge (Prrrpnt
Combining these solutions and using the superposition, we get
u(x,y,z,t)= > (Acos p,x+Bsin p,x)(C cos p,y + Dsin p,y)(E cos p,z + F sin p,Z)Ge (P PPN
P, P2, P3=1

Corollary: The Heat equation in two-dimensional is

ou ,|lo0°u &
— =M=+
ot ox: oy

The solution is

u(x,y,t)= > (Acos p,x+Bsin p,x)(Ccos p,y + Dsin p,y)Ee (PPN
P, py=1

1.5.2 Solution of Heat Equation in Cylindrical Polar Co-ordinates

In cylindrical co-ordinates, Heat equation has the form

@+18_u+i@+@—ia_u (1)
o’ ror r’o0* or* h oot
To solve it by the method by separation of variables, we have

u(r, 0, z,t) = R(rOO)Z(2)T (t) e
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giving
ou dR o’u d°R
—=—0(0)Z(2)T(t : — = O(0)Z(2)T(t
or dr (0)2@TO or® dr? (0)2@TO
o°u d’e ou d?z
e ()M2 (2)T (1) - ()()OIZZ (t)
ou dT
—=R(r)®(0)2(z)—
p (Ne(o) ()O|t
Substituting all these values in equation (1), we get
1(d*R 1dR 1 d’e d?z 1 dT
- —+—-——|+ + = —
R{dr? rdr) r’@d@* dz* h°T dt
Using the method of separation of variables, we have
L L S @3)
h“T dt dt
42 297 g @)
dz dz
1d%0 , do |,
and — =—U = +u®=0 ..(5
odr  © Tag "~ ©)
so that
2 2
LER LR) 4 o
R\dr® rdr) r
2 2
:d—|§+1d—R+ gz—ﬂ—z R=0  where &’ =A°-«" ...(6)
dr® rdr r

with solution of (3) as
T(t)=ae™
solution of (4) as
Z(z)=hcos(xz)+csin(xz)
solution of (5) as
©(0)=ecos(u0)+ fsin(u0)
The equation (6) is Modified Bessel’s Equation and the solution is
R(r)=AJ,(er)+BJ_,(er)  forfractional u
and

R(r)=AJ,(er)+BY_ ,(er)  forintegral
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where
x) & (-1) (;j
Jn(x):(ﬂ ;W ., where (n+1), =(n+1)(n+2)...(n+r)

3,00=(-1)"J,(x)

Y (x)——{log +7/}J (X)__ZIE(XT 2p

and

Thus, the solution of Heat equation is

u(r.0,z,t)= > ae"**[bcos(uo)+csin(ud)|[ecos(xz)+ f sin(xz) ][ A, (er)+BJ_, (er)]

A, p
for fractional z,

and u(r,0,a,t)= Y ae"**[bcos(ub)+csin(ud)|[ecos(xz)+ fsin(xz) ][ A, (er)+BY, (er)]

Ak, u
for integral .
Corollary: In 2-dimesnion, the cylindrical heat Equation is

o°u lou 1 d%u 1 ou

or’ ror r?o0* h® ot
and the solution of Heat equation is

u(r,0,t)=> ae™**[bcos(u0)+csin (10)][ A3, (Ar)+BJ_, (4r)] for fractional 4,
Au
and u(r,0,t)=> ae """ [bcos(ud)+csin(ud)][ AJ,(Ar)+BY, (ir)] for integral 1.
A

1.5.3 Solution of Heat Equation in Spherical Co-ordinates

In spherical polar co-ordinates, it has the form
ou 2au 1 8 ou 1 & 1au
—t-—+ SiNO— |[+—5————5= =
or’ rar r’sin@ oo 060) r°sin“ @ o¢ h? ot

Assuming u(r,8,¢,t) =R(r)O(8)D()T (t) , equation (1) becomes

(1)

1d’R 2 dR 1 d de 1 d’®d | 1dT
St ot | SN —— = 2 | "2 4
Rdr® Rrdr Or°singddé do ) r?sin®6Dd dg h® dt
Let %d—T=—/12 = ar +A°h°T =0 .(2)
hT dT dt
2 2
Ldo -m?® d D | M=o ..(3)

®dg Y
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with solution given by

T(t)=ae ™

®(¢):beiim¢
and
2 2 2
% i(sin@d—(aj—%:— r_d_l:2+£d_R —2%r? =n(n+1) (say)
®sing do d@ ) sin“@ R dr R dr
giving
d?R drR
r? +2r—+(A2%r>’=n(n+1))R=0 (4
dr? dr ( ( )) )
2
! i(sined—®j+ n(n+)-—"_le=0 .5
®sing d@ do sin“ @

Here (4), being homogeneous, if we put r=e*and D Edi , reduces to
S

[D(D-1)+2D—-n(n+1)]R=0
or (D-n)(D+(n+1))R=0
R=Ae™ +Be ™"
=Ar"+Br"*

Putting «=cos@ in (5), so that

d® dOdu . dO 1 d d
— = - sin—=>— —=——
dé dudé du singdé du

d ,,dO m?
a{(1—;1 )E}+{n(n+l)_1—u2}®=0

2 2
or 032 2,99 fhnen - _lo—o
du du 1-u

we have

which is associated Legendre equation, then the solution is of the form
® =0(cosb)
and hence solution of given problem is

u,(r,6,¢,t) = (Ar" + Br "*)@(cos f)e*™e + 1"

Hence, summing overall n and trying superposition, the general solution of (1) may be expressed as
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B +idga—A2hlt - . .
u(r,0,4,t)=> (Ar'+ rnQl)(a(cos f)e"**e "™ is required solution.

n,A,m

1.5.4 Solution of Laplace Equation in Cartesian Co-ordinates

In Cartesian co-ordinates, the Laplace equation has the form

az\g +az\£ +62\£ =0 (1)
ox- oy° oz
To solve it by the method of separation of variables, we have
V(X Y,2) = X(X)Y(y)Z(2) (1)
2 2 2
givingﬂzd >2(YZ, ﬂzxd—ZZand ﬂzXYdf
ox~  dx oy dy oz dz

so that (1) gives
1d°X  , _d*X

Xae P T ge TRX0 -
1d? d2y
? dy2 :—pzz :>d—y2+ p22Y =0 (3)
1d°z d?z
e p° = . p°Z =0 where p®> = p°+p,’ (4

The solutions of these equations are

X (x) = Acos p,x+ Bsin p,x
Y (y)=Ccos p,y+Dsinp,y
Z(z)=Ee” +Fe ¥

The combined solution of (1) is
V,(x,Y,2) = (Acos p,x+Bsin p,x)(C cos p,y +Dsin p,y(ce™ + De™™)
Using the superposition, we have
V(x,y,2) = > (Acos px+Bsin p,x)(C cos p,y + Dsin p,y(ce” + De ™)
Prs P2

Corollary: In 2-dimesnion, the Laplace equation has the form

oV oV
+—=

oo 0 (1)

To solve it by the method of separation of variables, we have
V(X y)=X(X)Y(y) -(2)
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ﬂ—_dzxY and ﬂ— ﬂ

ivin
Jving ox> dx® oy° dy?

so that (1) gives
1 d*X 1 d?y o

X d¢  Ydy?
Now,
d?X
2
and (:1;2( - p’Y =0 .(4)

The solutions of these equations are
X (X) = Acos px+ Bsin px
Y(y)=Ce™ +De ™

The combined solution of (1) is
V, (X, y) = (Acos px+Bsin px)(ce” + De ™)
Using the superposition, we have

V(x,y) =Y [(Acos px+ Bsin px)(ce™ + De )]

1.5.5 Solution of Three-Dimensional Laplace Equation in Cylindrical Co-ordinates

In cylindrical co-ordinates, Laplace’s equation has the form

o 10V 10NV oV
e e
o ror r2o0* oz

Assuming that Vv (r, 9, z) = R(r)®(6)Z(z) , then (1) yields

0 ()

1d°R 1drR 1 d°0 1d?z
oz T T2 2t 7=
Rdr* rRdr r'®edo” Z dz

Since the variables are separated, we can take

Q)

102, 1d*0
= =1 and — =—
z 07° @de? "
2 2
:af—zzz:o and d(:)+,u2®:0
0z de

yielding the general solutions as
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Z(z)=Ae” +Be ™ and ©(f)=Ccosud+Dsin ub

Now, equation (2) reduces to

2 2
d R+ld—R+(12—’u ijO

dr® r dr r?

Which is Bessel’s modified equation, having the solution
R(r)=EJ ,(Ar)+FJ_,(Ar) for fractional s

and R(r)= EJﬂ(/lr) +FY, (Ar) for integral 1 .

Hence, the combined solution is

V(r,0,2) = (Ae* +Be*)(Ccos uf + Dsin ud)(EJ, (Ar)+ FI_,(Ar)),

Au

for fractional 2 .

V(r,0,2) = Z(Aeiz +Be ™ )(C cos u6+Dsin u6)(EJ, (Ar) + FY, (Ar)),

Ap

for integral £« .

Corollary: 1. Taking constant AM and B, , the general solution can be written as

A

R(r)=A,Jd,(Ar)+B,Y,(4r)

gyl

But Yﬂ(/ir) —>0as r — 0, therefore if it is finite along the line r =0, then BM =0, hence the solution is
V(r.6,2)=> > A,J,(Ar)e s
A
Trying the superposition, we can write the solution as:

V(r,6,2)= Y J,(ar) [e“(Aﬂ cos uf + B, sin ) +e*(C, cos uf + D, sin y@]
A,1=0
2. Solution of Laplace Equation in Two Dimension in Polar Co-ordinates

The Laplace equation has the form:
oV 1oV 1%V
P LA i R
o ror r-oé
To solve it by the method of separation of variables, we take

V (r,6)=R(r)0(6) -(2)

(1)

giving
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oV _dRr oV d°R

—= QI : = QI and
or dr ) or? dr? ©)

oV d?e

— =R(r

06? ( )d92

Substituting all these in the equation (1), we get

e erZR+rd—R ——£d2®—n2(sa)
R dr? dr O do? Y
so that we have

1( ,d’R R )

—|rF—+r— |=n°(sa

R[ dr’ drj (s2y)
2

= rZOI |3+rd—R—n2R:O ..(3)
dr dr

which is homogeneous and hence on putting

z

r=e’, sothat z=logr sng p=r -9

dr dz

then the equation (3) reduces to

[D(D-1)+D-n*]r=0

=(D*-n’)r=0
Its auxiliary equation is

D?>-n®=0

=D=+%n

S R(r)=Ae™ +Be™

=Ar"+Br™

Also, the equation for (1) is

1d0
_29Y_, ..(4
0 d&? @

It has the solution
®(0) =Ccosngd+ Dsinng

The combined solution is

Vn(r,e)z(Ar”+Br‘”)(Ccosn¢9+ Dsinng) ...(5)

Also, for n=0, (3) and (4) becomes
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d’R dR
r? r—=0 ..(6
dr? " dr ©)
2
and 39(?=0 (7

Having the solution of (6) and (7) as
R(r)=c, +c,logr
0(0)=d,+d,o

Thus, for n=0, the solution is
V(r,8) =[c, +c,logr][d, +d,0]

Thus, the general solution is
V(r,0)=[c,+c,logr][d, +d20]+i[A1r” + Bnr‘”][Cn cosnéd + D, sinnd]
n=1

1.5.5 Solution of Laplace Equation in Spherical Co-ordinates
In spherical polar co-ordinates, it has the form
r2ﬂ+2ra—v+_ii[sinea—vj+ 12 Q:O
or or siné o6 060 ) sin“ 6 o¢
Assuming V (r, 8, ¢) = R(r)®(6)®(p) , equation (1) becomes
r’d’R 2rdr 1 d(. d® 1d®
———t——t+———|sinf— | |=———— =1
R dr R dr ®singdé do ® dg¢
1d’® d’®

(1)

>-———=1" = —+10=0
® dg¢ d¢
with solution given by
O(p) =Ce™
and
2 2 2
r_d 5+£d—R=— 1 i(sined—@}r—_ﬂ'z =n(n+1) (say)
R dr R dr ®sin@ do d@ ) sin“é@
giving
d?’R dR
r? +2r——-n(n+1D)R =0 (2
dr? dr (n+1) 2)

2
! i[sined—e)}r n(n+1)-—%_ |@=0 Ne)
®sing do do sin“ @
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Here (2), being homogeneous, if we put r =e*and D Edi, reduces to
s
[D(D-1)+2D—-n(n+1)]R=0
or (D-n)(D+(n+1))R=0
. R=Ae™+Be "
=Ar"+Br "t
Putting 4 =cosé in (4), so that
de dOdu . dO 1 d d
—=——=-SIN0— = ——=——
do dudéo du sinfddd du
we have

d NE) A2
@{(1—;1 )E}+{n(n+l)_1—y2}®_o

d%e do A2
or (1— 1 —2u—+<n(n+1) - ®=0
( u)dﬂ2 udﬂ {( ) 1—%}

which is associated Legendre equation, then the solution is of the form
® =0O(cos )
and hence solution of given problem is

V. (r,0,¢) = (Ar" +Br"™")@(cosf)e"

Hence, summing overall n and trying superposition, the general solution of (1) may be expressed as
n B +i - - -
V(r,0,4)=> (Ar +rn—jl)®(cosﬁ)e* * s required solution.
n,A

1.5.7 Solution of Three-Dimensional Wave Equation in Cartesian Co-ordinates
A partial differential equation of the form

o%u

= c*V?u

is known as Wave equation, that is
o'u  ,(0u d°u o
7 =C 2t 22t 52
ot ox~ oy® oz
- o’u . o’u +62u _ 12
ox> oy* oz® c*ot?

(D)

with the conditions
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6_u:0 at x=0,x=a
OX

8_u:0 at y=0,y=a
oy

a—U:O at z=0,z=a
0z

andu(x,y,z,t)=0att=0
To solve the problem, we shall use the method of separation of variables and assume that
u(x, y,z,t) = X(X)Y (V)Z(2)T ()

Now proceed as in previous examples to get
N,z N,z N7t mct
Upnon, (%1 Y2 Z,1) = a1, COS——COS —~2—C0S——CO0S JnE+nZ+n2
2'3 mNong a a a a

Therefore, using the superposition, the general solution is

= nz n,7z N7t zct
ux,y,z,t)= > anlnznscosl?xcosz—ycos:‘—zcos[—«/nf+n22+n§j

My, N, Mg =1 a a a

Corollary: Wave equation in two-dimensional is

o’u du 1 du
PYPV P

(D)
And the solution is given by

S nz n,z zct
u(x,y.t)= > a,, cosl?xcosz?ycos(?«/nfjungj

nnp=l

1.5.8 Solution of three-dimensional Wave equation in cylindrical co-ordinates

o’u lou 1 d%u ou 1%

—t——+— + == (L
o’ ror r’o6 ot ¢ ot S
Let the solution is u(r, 8, z,t) = R(X)O(8)Z ()T (t) (2
Choosing the constant the separation of variable such that
1 .d°T 2 T .,
- = - = + cT = 0 3
T ae " i P )
1d%0 2 de ,
R = — f— —+ @ = 0 4
odg | o7 *)
2 2
1dz——s2 :>dZ+SZZ:O ..(5)

Z dz? dz®
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The equation (1) becomes
d?u . l1du ¢? & )

d’u 1du , 0
Rl dhiies 2 R=0 ..(6
(dr2+rdr)+[§ rzj ©)

where & P=—s'+ p2 . Equation (6) is the modified Bessel’s equation of order g has a solution
R(r)=AJ,(&r)+B,J_,(&r) for fractional g

and R(r)=AJ,(r)+B,Y,(&r) for integral q.
Now

For a bounded solution, Y,(§T) —>oas r— 0, therefore if it is finite along the line r =0, then B,=0.
Thus, the general solution of equation(1) is

u(r,0,z,t) = > CJ, (&r)[ A cos(pct) + By sin(pct) ][ A, cos(qb) + B, sin(qd) |[ A, cos(sz) + B, sin(sz) |

p.q.s
1.5.9 Solution of Three-dimensional Wave equation in Spherical co-ordinates
In polar spherical co-ordinates the Wave equation is

o’y 2ou 1 d°u cotd du 1 du 1
ottt T T 2 2 ~p2
o ror r°oe r- 06 r°sin“do¢g- c° ot

Assuming that the solution of (1) is
u(r,0,¢,t) = R(NOO)D(H)T (1)

Now proceed as in previous articles to get

u(r,0,4,)= > (Ae™™)(Ae"™)(CR"(cos ) + DPn”‘(cos,é?))[Er_;Jn L(pr)+ Fr_;J_( 1](pr)J 16

p.q.s
Method of separation of variables to solve B.V.P. associated with motion of a vibrating string

1.6.1 Solution of the problem of vibrating string with zero initial velocity and with initial
displacement

Let us consider an elastic string of length L, fastened at its ends on the x-axis and assume that it vibrates
in the Xy —plane. Initially the string is released from the rest and we want to find out the expression for

displacement function y(x,t). The B.V.P. modeling the motion of string is
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%:azgz—g (0<x<L,t>0) (1)
y(0,t)=y(L,t)=0 (t>0) -(2)
y(x0)=f(x), (0<x<L) -(3)
%(X,O):o, (0<x<lL) +(4)

Here, it is assumed that f (X) is the initial displacement of the string before release and initial velocity is

zero. We find the solution of equation (1) by separation of variables. For this, we set y(X,t)= X (x)T (t)
and using this, we get

XT"=a*X"T orx—zT2
X aT

Since the left side of this equation is a function of x only and right hand side is a function of t only where
X and t are independent, both must equal to some constant. Let the constant of separation is —A . The
above equation has become

X"+ AX =0; T"+1a’T =0 (5)
Since y(0,t) = X (0)T(t) =0

From here we conclude that X (0) = 0. This assumes that T (t) is non-zero for some t. Otherwise T =0 is

zero for all time and we get the trivial solution, i.e., string would not move and it is possible only when
f (x) =0 means string is not displaced.

Similarly y(L,t) = X (L)T (t) =0. Implies that X (L)=0.

The problem for X is

X"+AX =0
X(0)=0=X(L)
We have solved such types of problems earlier and the solution is
_(nzx) .. ‘rt
X (x)=A sin e with eigen values 4 = for n=1,2,3...,

Now the problem of T (t) is

2 _2
T"+nL’2’ T=0

With the condition w =0= X(x)T'(0)=0 =T'(0) =0. Otherwise the solution becomes trivial.

Thus the general solution is
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T.(t)= Ccos(n j+D (n;z_atj
L L

By applying the conditionT '(0) =0, we get D, = 0. Hence for fixed N , the solution for

nz
T, (t) = Ccos( L jforn 1,2,3...

Now, for a fixed, the solution of equation (1) is

Ya(X,1) =B, Sin(nll_xjcos(m—ft] where B, = AC,

Using the superposition, we obtain
nﬁa'[j

y(x,t) = Zyn(x t) ZB sm( L ]COS(T
Now, using the condition (3), we have

y(x,0) = f(x) = ZB sm(nij

Which is Fourier sine series and the value of constant coefficient B, is EI f(&)sin ( é] £

Thus, we have

-3 om( ol

Corollary: In the above problem, if f (x) is replaced by

f(x)=

The coefficient
2| (5, (nx& L . (nx&
B :EU’ §S|n(Tjd§+j;(L—§)sm( j «f}

_ AL sin (n—ﬁj
n’z’ 2

Thus the solution becomes
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AL &1 . (nz) . (nzX nrat
X,t)=— ) —sin| — [sIn coS
YD =725 (2) [Lj (Lj

. (n _ .
Since Sin [;J =0 ifnis even and sm((Zk _1)%] =(-1)" if nis odd positive integer. The solution

is

y(x,t)_4—22 sin(n:jsm(nijcos(m—ﬁj

1.6.2 Solution of the Problem of Vibrating String with Initial Velocity and Zero Initial Displacement
The B.V.Pis

o° , 07

#:agg (0<x<L,t>0) (1)
y(0,t)=y(Lt)=0 (t>0) (2)
y(x,0)=0, (0<x<L) (3)
%(X,O) =g(x), (0<x<L) -(4)

Similarly to earlier article, the solution for X is

2_2

. [ nzx
X, (X)=A, sm(%) with eigen values 4 = for n=12,3..,

T.(t)= Ccos(n j+D (n;zatj
L L

And applying the condition (3), we have
y(x,0)=X(X)T(0)=0=T(0)=0

The solution for T is

nrzat
This implies C, =0 and the solution for Tis T, (t) = ZD sm( ”L j

n=1

Therefore, the general solution is

y(x =3y, (1) =3B, sin(nLLXJsin(m—ftJ where AD, =B, ... (5)

Now, using condition (4), we have
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oy
=2 (x,0) =
o 0 =9()
oy < nza) . ( nzX
2 (x,0) = =-yB | =2 =2
2 u0) =99 =38, "7 Jsn| ™
Which is a Fourier sine series for g(x) , the value of coefficient B, is

2 |t . (nz&

B,=——|| f(&)sin| —d

=21 s " e

y(x,t) = nnazDO f(§)sm( i jdg}sm[ i jsm( C j

n=1

Example: Solve the following B.V.P

%y _ 2@
?—a v (O<x<L,t>0) (1)
y(0,t)=y(L,t)=0 (t>0) -(2)
y(x,0)=0, (0<x<lL) ..(3)
L
X ,0<x<—
%(X,O)z . (4
0 ,Z_XSL

1.6.3 The solution of the String Problem with Initial Velocity and with Displacement

Consider a string with both initial displacement f (x) and initial velocity g(x) . To solve this problem, we
firstly, formulate two separate problems, the first with initial displacement f (x) and zero initial velocity,
and the second with zero initial displacement and initial velocity g(x). In earlier article, we solved the
problem of string with zero initial velocity and with displacement and initial velocity and with zero
displacement. Let y,(x,t) be the solution of the first problem, and y,(x,t) the solution of the second.

Now let y(x,t) = y,(x,t)+Y,(x,t). Theny satisfies the Wave equation and the boundary conditions.
1.7 Solution of Wave equation for Semi-infinite and Infinite Strings

1.7.1 'Wave Motion for a Semi-infinite String

Let us consider an elastic string which is fixed at x =0 and stretched from 0 to o . The B.V.P.
for the motion of semi-infinite string is



58 Partial Differential Equations

o'y 0%

y—a v (x>0,t>0) (1)
y(0,t)=0 (t>0) -(2)
y(x,0)=f(x), (x>0) (3)
%(X,O):g(x), (x>0) -(4)

Here, this the problem of vibrating string with initial velocity and displacement. So we will separate the
problem in two parts: (i) zero initial velocity and with displacement (ii) with initial velocity and zero
displacement.

Q) Zero initial velocity
For this case g(x) =0 . For a bounded solution, we firstly set y(x,t) = X ()T (t) .

Using this in equation, we get

XII Tll
o .. (5)

In equation (5), the left side is a function of X only while right side is function of . So each side must be
equal to some constant, let that separation of constant is A . The equation (5) becomes

X"+AX =0
* ) ... (6)
T"+2a°T =0
And the condition (2) and (4) becomes
y(0,t)=X(O)T()=0 = X(0)=0 ..(7)

%(x,0)= X()T(0)=0 =T(0)=0 ..(8)

Now we will discuss the cases for different values of A4 .
Case 1:1f 4=0
Then X"=0 = X(x)=AX

Which is unbounded solution on the given domain, unless A=0. Thus, for this case we have a trivial
solution.

Case 2:if 1<0,let A=-p® with p>0.
Then X "— p*X =0 with the solution
X(x)=Ae™ +Be ™

X(0)=0 = A+B=0=A=-B

Now, X(x)=A(e™ —e ™)
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which is unbounded solution for p >0 unless A=0. Thus X (x) =0, again we get a trivial solution.
Case 3:if 1>0, let A= p° with p>0.

Then X"+ p°X =0 with the solution
X (x) = Acos px+ Bsin px

X(0)=0 =C=0

N .
oW, X (x) = Dsin px

Thus for each p>0, A= p? is an eigen value and X,(x)=D,sin px.

Now the problem for T is

T "+a’p°T =0 with the solution
T (t) = C cos( pat) + Dsin(pat)

T'0)=0= paD=0 = D=0
Now,
T(t) = C cos(pat)
Thus for p>0, T,(t)=C, cos( pat)
Therefore, for this case
y, (x,t) = E_sin(px)cos(pat) where E, =AC,

Using the superposition, we have

y(x,1) :TEpsin( px)cos( pat)dp
Also it is given y(x,0) = f(x) :TEpsin( px)dp = f(x)

So E, =%jf(§)sin(p§)d§

0] Zero initial displacement
For this case f (x) =0. For a bounded solution, we firstly set y(x,t) = X(x)T (t).
Using this in equation, we get
AT
X aT
In equation, the left side is a function of x only while right side is function of t. So each side must be
equal to some constant, let that separation of constant is 4. The equation becomes
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X"+AX =0
T"+1a’T =0
And the condition (2) and (4) becomes
y(0,t) = X (0)T(t)=0 = X(0)=0
y(x,0)=X(x)T(0)=0 =T(0)=0

Now we will discuss the cases for different values of 1 .
Case 1:I1f 1=0
Then X"=0 = X(X)= AX

Which is unbounded solution on the given domain, unless A=0. Thus, for this case we have a trivial
solution.

Case 2:if A <0, let A =—p® with p>0 .
Then X "— p*X =0 with the solution
X(x)=Ae™ +Be ™

X(0)=0 = A+B=0=A=-B

Now, X(x) = A(epX —e’px)

Which is unbounded solution for p >0 unless A=0. Thus X (x) =0, again we get a trivial solution.

Case 3:if >0, let 1= Pp* with p>0.
Then X "+ p>X =0 with the solution
X (X) = Acos px -+ Bsin px

X(0)=0 =C=0
Now, .
X (x) = Dsin px
Thus for each p>0, A= p? is an eigen value and X,(x)=D,sin px.
Now the problem for T is

T "+a’p®T =0 with the solution
.T(t) =Ccos(pat) + Dsin(pat) .
T(0)=0=paC=0 =C=0

NOW. 1 (t) = Dsin(pat)

Thus for p>0, T,(t)=D,sin(pat)
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Therefore, for this case
y,(x,t)=E_sin(px)sin(pat) where E, =AD,

Using the superposition, we have
y(x,t) = J' E, sin( px)sin( pat)dp
0

w =g(X) :>j paEp sin( pX)dp =g(x)
Also it is given i

2 %
E, =E‘£f(§)sm(p§)d§

Thus, the general solution is

0 0

2 %1% . .
y(x,t) ZQJ‘{EI f (g)sm(pg)dg}sm(px)cos( pat)dp

1.7.2 'Wave Motion for a Infinite String

Let us consider an elastic string which stretched over a real line. The B.V.P. for the motion of infinite
string is

o? , 0°

at_Z:a87¥ (-0 < x <o, t>0) (1)
y(x,0)=f(x), (—o<x<x) (2)
%:g(x), (-0 <X <) (3)

Similar to previous article, we will separate the problem in two parts: (i) zero initial velocity and with
displacement (ii) with initial velocity and zero displacement.

Case (i) Zero initial velocity
For this case g(x) =0. For a bounded solution, we firstly set y(x,t) = X(x)T (t). Using this in equation,
we get
AT
X aT
In equation, the left side is a function of x only while right side is function of t. So each side must be
equal to some constant, let that separation of constant is 4. The equation becomes
X"+AX =0
T"+1a’T =0
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and the condition becomes
%(X,O) — X()T(0)=0 =T'0)=0

Now we will discuss the cases for different values of A4 .
Casel:If 1=0
Then X"=0 = X(x)=Ax+B

Which is unbounded solution on the given domain, unless A=0. Thus solution is X (x) = B for the eigen
value.

Case 2: if 1<0 let A=—p° with p>0.
Then X "= p?X =0 with the solution
X(x) = Ae™ +Be ™

Since p>0, the first term in right hand side Ae™ is unbounded in the domain [0,00) and the second

term Be ™is unbounded in the region (—o0,0) Therefore, for a bounded solution, we have to assume that
A=0 and B=0. Therefore X(x)=0

Case 3:if 1>0, let A= p° with p>0.

Then X"+ p°X =0 with the solution
X (xX) = Acos px+ Bsin px
The function X (x) is always bounded for every p >0 an so, we have
X, (x) = A, cos( px)+B, sin( px)
Now the problem for T is
T"+2a’T =0 and

%(X,O)=X(X)T'(0)=0 =T'(0)=0

T(t)=Ct+D
If 1=0, thenwe have and T'(0)=0 =C =0
S T@E)=D

Is asolution for T . On the other hand, if 2= p°, P> 0, then the equation T "+a°p°T =0 has the solution

T (t)=Ecos(pat)+Fsin( pat)
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u T(0)=0 = paF =0= F =0
T,(t) = E_ cos( pat)
Therefore, for this case
Yo (x.t) = a, cos(px)+b,sin(px)]|cos(pat) wherea,=AE, and b,=BE,

Using the superposition, we have

y(x,1) = T [ &, cos( px)+b, sin(px) |cos( pat)dp

Also it is given y(x,0) = f(x) = T [ap cos( px)+h, sin( px)]cos( pat)dp

o0

a, =% I f (&)cos(ps)dp

Where

0

bp_i _|. f (&)sin(p&)dp

—00

So E, =%J'f(§)sin(p§)d§

(ii) Zero initial displacement

For this case f (x)=0. Similar to previous case, the eigen function for Xis
X, (x)= A cos(px)+ A sin(px) with eigen values 4 = p® with p>0. And the solution for T

T,(t) = E, cos( pat)+F,sin( pat)
The problem is same as zero initial velocity except the condition y(x,0)=0.This implies
X (X)T(0)=0=T(0)=0. We have E; = 0. The solution becomes T, (t) = F, sin( pat)
Therefore, for this case, the solution is
Y, (x.t) =[ a, cos(px)+b,sin(px) |sin(pat) where a,=A,F, and b, =B,F,

Using the superposition, we have

y(x,1) = T [ &, cos( px)+b, sin(px)]sin( pat)dp

Also it is given

ay(aXt.O) =9(x) :>_]i pa[ap cos(px)+bpsin(px)}sin(pat)dp =g(x) .
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The coefficient a, and b, are given by

1

a, _ap_ﬂ mg(g‘)cos(pé)di
1 (= :

bp—ap—” mg(f)sm(pf)df

Problems:

1. Find the solution of B.VV.P

O’y _ 20

0<x<L,t>0)

a e
y(0,t)=y(L,t)=0 (t>0)

X ,Oﬁxsg
y(X’O): L

L—-x ,ESXSL

Y (% 0) = X
E(X,O)—x(cos( 3 jj (0O<x<L)

2. Find the solution of B.V.P.

0%y 0%y
yzazy (X>0,t>0)
y(0,t) =0 (t>0)
X(1—Xx) ,0<x<1
,0)=
y(x.0) (0 X>1

%(X,O)=O (x>0)

Some other problems

The Heat Equation in an Infinite Cylinder

Suppose we want the temperature distribution in a solid, infinitely long, homogeneous circular cylinder
of radius R. Let the z-axis be along the axis of the cylinder. In cylindrical co-ordinates the Heat equation

IS:

2 2
Z‘tjzazvzu:az[ﬁ u lou 1 o

or’ ror r?o0* oz?

We assume that the temperature at any point in the cylinder depends only on the time t and the distance r

from the z-axis, the axis of the cylinder. This means that u

= =0 and the Heat equation is
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V,(r,6,4)=(Ar" +Br"*)@(cos #)e™

u_ .0 o%u Llaou
ot or? r o

Here u is a function of r and t only. The boundary condition we will consider is
u(R,t)=0

for t>0. This means that the outer surface is kept at temperature zero.

Now as in previous articles (left as an exercise for readers) we obtain,

(er -a’z%t R
u(r) = s 3 e oy | f(é)é%[%jd«f

Solve the following exercise:

Exercise: A homogeneous circular cylinder of radius 2 and semi-infinite length has its base, which is
sitting on the plane z =0, maintained at a constant positive temperature K. The lateral surface is kept at
temperature zero. Determine the steady-state temperature of the cylinder if it has a thermal diffusivity of

a®, assuming that the temperature at any point depends only on the height z above the base and the

distance u from the axis of the cylinder.

The Heat Equation in a Solid Sphere:

Consider a solid sphere of radius R centered at the origin. We want to solve for the steady-state temperature

distribution, given the temperature at all times on the surface

Solution: Here, it is natural to use spherical co-ordinates. We assume that temperature depends only on

distance from the origin R. The angle of declination from the z-axis ¢, with % =0, Laplace equation in

spherical co-ordinates is

o’u 2ou 1 d%u cotd du
et Tt 2ot T A,
or ror r°o60 r° o6
for(0<r<R,0<¢<7)

=0 ()

The temperature is given on the surface

uR,9)="1(¢) (O<g=<n) --(2)
To solve this BVP, we set

u(r,¢) = R(r)®(¢) --(3)

(Remaining solution is left for readers as an exercise).
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LAPLACE EQUATION AND ITS SOLUTION

Structure

2.1 Introduction

2.2 Transport Equation

2.3 Non-Homogeneous Equations

2.4 Laplace Equation and its Fundamental Solution.
2.5 Mean-Value Formula

2.6 Properties of Harmonic Functions

2.7 Green Function

2.1 Introduction

To model the physical problems, the partial differential equations (PDESs) are the common method. PDEs
can be used to describe a wide variety of phenomena such as sound, heat, diffusion, electrostatics,
electrodynamics, fluid dynamics, elasticity, gravitation and quantum mechanics, etc. In this chapter, we
will discuss about different types of the partial differential equations, their classifications and the classical
and weak solutions, etc.

Partial Differential Equation

A partial differential equation (PDE) is differential equation that contain an unknown function and its

partial derivate with respect to two or more variables i.e., let U be an open subset of R". An expression of
the form

F(DXu(x), DK Lu(x),..., DU(x),u(x),x) =0 (x V) (1)
is called a k"-order partial differential equation, where
F:R" xR™ x..xR"xRxU —R is givenand u:U — R is the unknown.

Example: The equation u, +u, =0 is a partial differential equation, the unknown function is u and
independent variables are x and t.

2.1.1 Classifications of Partial Differential Equations

Partial Differential Equations can be classified into four types

(a) Linear (b) Semi-linear (c) Quasi-linear (d) Non-linear.
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(@) Linear Partial Differential Equation: A Partial Differential Equation (1) is said to linear PDE if it
has the form

> a,(x)DU=f(x) . (2

|a| <k
for a given function a, (e <k)and f Here, it s clear that the coefficients of derivate are a function of x
only. The above equation is said to be homogeneous if f=0.
For example: u, +u, =0 is a transport equation which is of first order, linear and homogeneous.
Some famous linear PDE are

1. Laplace equation Au=0 or »u, =0

2. Linear Transport Equation U, +bAU=0, beR"

Du = (le Uy Uy )
3. Heat (Diffusion) Equation u,—Au=0
4. Wave equation U, —Au=0

(b) Semi-linear Partial Differential Equation: A Partial Differential Equation (1) is said to semi-linear
PDE if it has the form

> a,(x)D“u+a,(D“"u,..., Du,u,x) =0, . (3)
|a| =k
Here, coefficient of highest order derivative is a function of x only.
For example: a(x)u,, +u,u, =0.

(c) Quasi-linear Partial Differential Equation: A Partial Differential Equation (1) is said to quasi PDE
if it has the form

> a,(D“,...,Du,u,x)DUu+a,(D“"u,..., Du,u,x) =0, o (4
o =k
Here, coefficient of highest order derivative are lower order derivative and function of x but not same

order derivatives.

For example: u u__+u_u, =0
XXX Xt

(d) Nonlinear Partial Differential Equation: A Partial Differential Equation is non-linear in the highest
order derivatives.

For example: u2u +u_u =0
XX Xt
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2.1.2 System of Partial Differential Equations

An expression of the form is said to be system of partial differential equations if it is represented by
F(DXa(x), DK la(x),...0T(x),T(x),x) =0 (xeU)

is called a kth order system of partial differential equations in u where
_ k k-1
F:RMN S RMN x..xRM xRMxy — RM

is given and u = (ul,uz,...,um) is the unknown function such that u:U — R™

For example:

HAU+(A+ p)divu=0 where u = (ul,uz,u?’)

Note: The classifications of system of partial differential equations are same as in case of a partial
differential equations.

2.1.3 Solution of PDE

An expression u which satisfies the given PDE (1) is called a solution of the Partial Differential Equation.

Well posed problem: A given problem in Partial Differential Equation is well posed (Hadaward) if it
satisfies

(i) existence

(ii) uniqueness

(iii) continuously depend on the data of given problem.
Classical Solution: If a solution of a given problem satisfies the above three conditions i.e., the solution
of k™ order partial differential equation exists, is unique and is at least k times differentiable, then the

solution is called classical solution. Solutions of Wave equation, Lalpace, and Heat equation etc., are
classical solutions.

Weak Solution: If a solution of a given problem exists and is unique but does not satisfy the conditions
of differentiability, such solution is called weak solution.

For Example: The gas conservation equation

u +F(u)=0
models a shock wave in particular situation. So solutions exists, is unique, but not continuous. Such
solution is known as weak solution.

Note: There are several physical phenomenon in which the problem has a unique solution, but does not
satisfy the condition of differentiability. In such cases, we cannot claim that we are not able to find the
solution rather such solutions are called weak solutions

2.2 Transport Equation
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Homogeneous Transport Equation

The simplest partial differential equation out of four important equations is the Transport equation with
constant coefficient

U,+b.Du=0 (D)

in R"x(0,00), where b=(0,b,,b;...,b,) is a fixed vector in R" and u:R" x[0,50) - R is the unknown
function u=u(x, t). Here X= (Xl, xn) € R" denotes a typical point in space and t > 0 is the time variable.

Theorem: Initial Value Problem

Consider the homogeneous transport equation

u,+b.Du=0 in R"x[0,) (D)
u=g on R" x{t =0} (2

where beR"andg:R" > R is known and Du=Du=(u, u, ) for the gradient of u with respect to

the spatial variablesX. The problem is to compute u(x,t) .
Solution:

Let (x,t) be any point in the R"x[0,). To solve equation (1) , we observe the L.H.S. of equation (1)
carefully, we find that it denotes the dot product of(uxl v Uy ul) with(b,...,b,,1) . So L.H.S. of equation
(1) tells that the derivative of u in the direction of (b,1) is zero inR"™" dimensional space. So, the line
through (x,t) in the direction of (b,1) is

X(s) =x+sb
, SeR .. (3)
t(s)=t+s
This line hits the plane T':= R" x{t = 0} at the point (x—th,0) when s=-t.
Define a parametric equation of line in the direction (b,l) is
z(s)=u(x+sh,t+s) .. (4

where s € R is the parameterand z:R —> R.
Then, differentiating (4) w.r.t. s, we get

2(s)=Du(x+sb,t+s)b+u,(x+sb,t+s)

0 (using (1))

= z(s) is a constant function of s on the line (3).
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= U is constant on the line (4) through(x,t) with the direction(b,1) e R™.

and u(x—tb,0) = g(x—tb)
By virtue of given initial condition (2), we deduce that
u(x,t) =g(x—tbh) ...(5)for xeR"andt>0.
Hence, if we know the value of u at any point on each such line, we know its value everywhere in
R"x(0,o0) and it is given by equation (5).
Conversely, ifg e C', thenu = u(x,t) defined by (5) is indeed a solution of given initial value problem.
From (5), we find that

u, =—b.D(x—tb)
and

Du=Dg

Henceu, +b.Du = —b.Dg +b.Dg = 0 for (x ,t) in R" x[0,0) and for t=0 u(x,0)=g(x) onR"x{t =0}

Remark: If g is not C*, then there is obviously no C*solution of (1). But even in this case formula (5)
certainly provides a strong and in fact the only reasonable, candidate for a solution. We may thus

informally declare u(x,t)=g(x—tb)(xeR",t>0) to be a weak solution of given initial value problem

even should g not be C*. This all makes sense even if g and thus u are discontinuous. Such a notion, that
a non-smooth or even discontinuous function may sometimes solve a PDE will come up again later when
we study nonlinear transport phenomenon.

2.3 Non-homogenous Problem

Theorem: Consider the non—homogeneous initial value problem of transport equation

u +b.Du=f(xt) in R"x(0,) ..(D

u=g on R" x{t =0} -.(2)
where beR", g:R" >R, f:R"x[0,50) > R is known and Du=D,u =(uxl,...,uxn) for the gradient of
u with respect to the spatial variables x . Solve the equation for u=u(x,t) with initial condition (2).
Solution: Fix a point(x,t) e R™ as discussed before, the equation of line passing through (x,t) in the
direction of (b,1) is given by z(s) =u(x+sb,t+s), where s is the parameter.
Differentiating thisw. r. t.s
2(s)=f(x+sb,t+s)  (using (1))

Integrating w. r. t.Sfrom -t to O
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Iz‘(s)ds=_[ f (x+sb,t+s)ds

—t _

z(O)—z(—t):j f (x+sb,t+s)ds

0 0
t

Substitute t+s=y/ , ds=d i

Z(O)—Z(—t):j f (X+b((//—t),1//)dz//
u(x,t)—u(x—bt,0)=j f (x+b(s—t),s)ds (- replacing w by s )

u(x,t)=u(x-bt,0)+ | f (x+b(s—t),s)ds

O ey —+

u(xt)= g(x—bt)+j' f (x+b(x-t),s)ds (XE R",t 20)

It is the required solution of initial value problem for non-homogeneous transport equation.
2.4 Laplace’s Equation and its Fundamental Solution

We get the Laplace’s equation in several physical phenomenon such as irrotational flow of incompressible
fluid, diffusion problem etc. Let U = R"be a open set, x € Rand the unknown isu:U —»R, u=u(x)

then, the Laplace’s equation is defined as
Au=0 .. (D)
and Poisson’s equation
—-Au=f

where the function f :U — Ris given.

n
and also remember that the Laplacian of u isAu = ZUXi -

i=1
Definition: Harmonic function
AC? function u satisfying the Laplace’s equation Au =0 is called a harmonic function.
Theorem: Find the fundamental solution of the Laplace’s equation (1).

Solution: Probably, it is to be noted that the Laplace equation is invariant under rotation. So we attempt
to find a solution of Laplace’s equation (1) inU = R", having the form (radial solution)

u(x)=v(r), ..(2)
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where I =|X| = (Xl2 +ot X )% and v is to be selected (if possible) so that Au = 0 holds.

We note that
o 1,, Y X;
— =X +...+X 2% =— X#0
8Xi 2(X1 ”) ! r ( )
fori=1,2,...,n.

Thus, we have

X.
u =v'(r)-=,
=V
2 2
and U _v"(r)xi+v'(r) 1A
X X, (2 ro3
fori=1,...,n.

2 n

r

i=1
Hence Au =0 if and only if
v"+—1v':0
r
Ifv'=0, we deduce
e V"
log(|v1) =S
Integrating w. r. t. r,
logv'=—(n-1)logr+loga

where log a is a constant.

a

NOW, VvV ‘= )

r

Again integrating

alogr+b  (n=2)
v(r)=: a

rn—2

+b (n>3)
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where a and b are constants.
Therefore, if r >0, the solution of Laplace’s equation is
alog|x+b  (n=2)

u(x)= II%H) (n23)

Without loss of generality, we take b=0. To find b, we normalize the solution i.e.
[ u(x)x=1
Rn
So, the solution is
—ilog|x| (n=2)
2r
u(x)= 1 ...03)
n-2 (n 2 3)
n(n-2)a(n)x

for eachx e R",x#0 and a(n) is the volume of the unit ball in R".

We denote this solution by ®(x) and

Z_—ilog|x| (n=2)
O (x)= 1 .. (4

a0

defined forx e R",x # 0, is the fundamental solution of Laplace’s equation.

Remarks: 1. We conclude that the solution of Laplace’s equation Au = 0, ®(x) is harmonic forx = 0. So
the mapping x — ®(x), X # 0 is harmonic.

2. Shifting the origin to a new pointy, the Laplace’s equation remains unchanged. So CD(x - y) is harmonic

forx#y.If f :R" — R is harmonic, then®(x—y) f () is harmonic for eachy € R" and x = y .

3. If we take the sum of all different points y over R", then

j ®(x—y)f(y)dy isharmonic.
a

Since Au(x) = .[Axcb(x— y) f(y)dy

is not valid near the singularity x=Yy.
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We must proceed more carefully in calculating Au.

2.4.1 Fundamental Solution of Poission’s Equation

To solve the Poission equation is Au=—f, wherexeU < R", f :R"— R, U is an open set and unknown
function is u:U — R.

Solution: We know that x—>®(x—y)f(y) forx=y is harmonic for each point yeR",

and so is the sum of finitely many such expression constructed for different points y Consider the
convolution

u(x) = [ @(x—y)f(y)dy - (9)
Form equations (4) and (5), we have

—= [ logx-yD (e (n=2)

u) = 1 I f(y) dy (n=3) - ©
- 2amipy "

For simplicity, we assume that the function f used in Poission’s equation is twice continuously
differentiable. Now, we show that u(x) defined by equation (5) satisfies

(i) ueC?*(R")

(i) Au=—f inR".
Consequently, the function in (6) provided us with a formula for a solution of Poission’s equation.
Proof of (i):

Define u as,
u(x)= I@(x—y) f(y)dy
Rﬂ
By change of variable X—Yy =12

u(x) = jcp(x)f(x—z)dz = jcp(x)f(x—y)dy

By definition . U, .is

u(x+he;)—u(x) f(x+he)—f(x) .
: =Rjn<1>(y){ . }dy *)

where h = 0 is a real number e, e R", & = (0,0,...,0,1,0,...,0) with 1 in the i"" position.

Thus, on taking h — 0 in equation (*), we have
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OX
fori=12,3,...,n
Similarly,

ou(x) j (){af(x y)} —

au(x) - J' (y) {af (;X_ y) }dy (**)

OX;0X;
fori, j=1,2,...,n
As the expression on the right hand side of equation (***) is continuous in the variable x, we see that
ueC?*(R")
This proves (i).
Proof of (ii)

(ii) From part (i), we have

= J'HCD(y)AXf (x—y)dy

Since®(y) is singular at y = 0, so we include it in small ball B(0,¢), where & > 0

Then,
Au(x)= J O(y)A,f(x-y)dy+ _[ O (y)A,f(x—y)dy
B(0,¢) R"-B(0,¢)
=1+, ()
where
I, = I D(y)A, f(x—y)dy . (8)
B(0.&)
j @ (y)A, f(x—y)dy .. (9)
(0.)
Now,

_[ O(y)A, f(x—y)dy

B(O,g)

<elo 1l | o0l

S{c¢>;~2|log g (n=2)

ce? (n>3)
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R"-B(0,¢)
= [ o(y)a,f(x-y)dy [-.-iz__ AX:AV]
R"-B(0.¢) OX

Integrating by parts

- ] oo, tx-vay | oy Ty

R"-B(0,¢) B(0.2) ov

where v denoting the inward pointing unit normal along 6B(O,g).

=K, +L,

We take,
of (x—y)
L|= D(y) ds(y)
OB(IO,S) 81/
S”Df L(R") J‘ |(I)(y)| ds(y)
aB(0,¢)
L celloge| (n=2) (10)
Tl ce (n>3)
Now K, =- j Dd(y)D, f (x—y)dy
R"-B(0,%)

Integrating by parts

K, - _J(O )ACD(y) f (x—y)dy—asi )aq;(vy) f(x-y)ds(y)
- .[ aq;(y) f(x—y)ds(y) (since @ is harmonic)
|4
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ob oD oD
D® = —, —, ..,
¥) (ayl &, ayn]
Also ai)zi L 1,2
oy, oy, n(n—2)o¢(n)|y|n
_ -2y 1 8|y|: -1y
n(n-2)a() y"* & na()|y]"* Y]
_1 y
=— = y#0
ne(n)|y| =0
and V=ﬁ=_?y on B (0,¢)
So,
oo(y) B 1 B
» _v.DcD(y)_na(n)g — on dB(0,¢)
Now, we have
1
Kg=—WaB(J;£)f(X_y)d5(y)

ng—qs f(y)ds(y)—>—f(y) @ e—0

0B(x,&)
Combining equations (5) to (11) and lettinge — 0, we have

Au(x)=—f(x)

This completes the proof. Thus u(x) given by (5) is the solution of Poission’s equation.

2.4.2 Some Important Properties (in Polar coordinates)

(i) Ifdx:T [ (fds)dr

o(x,r)

Ol fdx—j( [ fds]dr
B(Xo.r) 0\ 8B(Xo.r)

... d
(iii) E{ j deJ_aBJo,r) fds

B(Xp,r)

. (11)
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2.5 Mean-value Theorem
Theorem: Mean-value formulas for Laplace’s equation

If U is a harmonic function. Then

u(x)= CJS uds = cJS udy .. (1)

aB(x.r) B(x.r)
for each ball B(x,r)cU.
OR
If u is harmonic function, prove that u equals to both the average of u over the sphere 8B(x, r)and the
average of u over the entire ball B(x,r) provided B(x,r)cU .

Proof: (Proof of Part I)
Set O(r):= cﬁ u(y)ds(y) .. 2)

aB(x,r)

Shifting the integral to unit ball, if z is an arbitrary point of unit ball then

O(r):= 95 u(x+rz)ds(z)

oB(x,r)
Then
O'(r)= <JS Du(x+rz).zds(z)

And consequently, using Green’s formulas, we have

®'(r)= CJB Du(y).?ds(y)

oB(x,r)

= gS Du(y).vds(y), where v is unit outward normal to dB(x,r).

(ﬁ Au(y)dy =0 (‘.‘AUIO on B(X,r))

Hence @ is constant and
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@(r):lEQ@(t):[EgaB%ﬁ)u(y)ds(y):u(x) ..(3)

From (2) and (3), we have

u(x)= Sﬁ u(y)ds(y) o (4

aB(x,r)
(Proof of Part I1)
Using coarea formula, we have

_[ udy_j[ _[ uds}dt
B(x.r) 0\ aB(xt)

= <j> udy ... 5

From (4) and (5), we have

u(x) = 4) uds = 95 udy

B(x.r) B(x.r)

Hence proved.

Converse of Mean- value Theorem

Theorem: If ueC?(U) satisfies the mean value formula

u(x)= <f> )uds

OB(x,r
for each ball B(x,r)cU, then u is harmonic.
Proof: Suppose that u is not harmonic, so Au # 0. Therefore there exists a ball B(x, r)cU such that
Au >0 within B(x,r).
But then for @, we know that

0=0'(r)= qS Au(y)dy >0

(xr)

which is a contradiction. Hence u is harmonic in U .

r
Ng
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2.6 Properties of Harmonic Functions

Here, we present an interesting deduction about the harmonic function, all based upon the mean-value
formula by assuming the following properties that U < R" is open and bounded.

2.6.1 Strong Maximum Principle, Uniqueness

Theorem: Let u e C? (U )mC(U) is harmonic withinU..

0] Then maxu = maxu
U oU

(if) Furthermore, if U is connected and there exists a point X, € U such that
u(x,)=maxu,
ROV
then u is constant withinU .

Assertion (i) is the maximum principle for Laplace’s equation and (ii) is the strong maximum principle.

Proof: (ii) Suppose there exist a point x, €U such that

u(xo):mugxu=M .. (1)

Then for O<r < dist(xo,au ) , the mean value property implies

M = u(xo) = B(cxjir)udy

1
B a(mr” -[

B(Xo,r)
M
< d
a(nr” I y

B(%.r)

<

M
Equality holds only if u=M within B(x,,r). So we have, u(y)=M for ally € B(x,,r). To show that
this result holds for the set U .

Consider the set
X ={xeUJu(x)=M}
We prove that X is both open and closed.

X is closed since if x is the limit point of set X, then 3 a sequence {x,}in X such that {x,} — x
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Since uis continuous so {u(x, )} —u(x).
So u(x)=M
=xeX

= X isclosed.

To show that X is open, let x € X, there exists a ball B(x, r) U such that
u(x)= <]5 udy
B(x,r)

So xeB(x,r)c X.

Hence X is open.

But U is connected. The only set which is both open and closed in U is itself U.So U = X..

Hence u(x)=M VxeU Sou isconstantin U .
(i) Using above result, we have u(y)<u(x,) for some y and suppose X, €U .

Since U is harmonic, so by mean value theorem, there exists a ball B(X,,r)cU such that

u(x,)= <j> uds(y)

9B(%o.r)

M <

1
ramr O] s

<[u(y)|

Maximum value is less than |u(y)| which is a contradiction.
Hence X, €0U .

Remarks: 1. If U is connected and u e C*(U ) \C (U ) satisfies
Au=0inU
u=g on ouU

where g >0.

Then U is positive everywhere in U if g is positive somewhere on oU .

2. An important application of maximum modulus principle is establishing the uniqueness of solutions to
certain boundary value problem for poission’s equation.
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Theorem: (Uniqueness)

Let geC(AU), feC(U). Then there exists at most one solution ueC*(U)~C(U) of the boundary

value problem
—Au=f inU
u=g on ouU
Proof: Let U and U be two solutions of given boundary value problem, then
—Au=f inU
u=g on oU
and
~Au=finU
a:g on oU
Let w=+(u—0)
Aw=0 inU
w=0 on oU

= W is harmonic in U and W attains maximum value on boundary which is zero. If U is connected
then W is constant. So w=0 in U

Hence u=U in U .

2.6.2 Regularity

In this property, we prove that if u e C?is harmonic, then necessarilyu e C*. Thus harmonic functions
are automatically infinitely differentiable.

Theorem: If u e C(U )satisfies the mean value property for each ball B(x,r)cU, then
ueC”(U)

Proof: Define a set u_= {xeU|dist(x,0U)>s}and 7 be astandard mollifier.
Set ugzng*u in U, .. (D

We first show that u® eCOO(Ug).
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Fix xeU_, where X=X\ %, X, ).

Let h be very small such that x+hei eug.
ué(x)=n_*u

Jn(x_y)u(y)dy .. ()

—iJU(y)dy )

Now using (2) and (3), we have

u® (x-+he;)-u? (x) _iuj U(X—y;hei}n(x;y) -

h g"

Taking the limitas h —» 0

ou’® 1 J

&

exists.

. o { an ou
Since neC”(R"). So o~

Similarly D%u€ exists for each multi-index « .

So ugecw(u )
&

We now show that u=u® on U,.

Let X€U, then
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== I”(Lj u(y)ds dr  (using the cor. of coarea formula)
0 € oB(x,r)

(Lj ne(n)r"“u(x)dr  (by Mean value formula)
&
)

=u(x) J’ 1. (y)dy (by definition)

So ué =u in U_ andso u eCOO(Ug) foreach ¢ >0.

Note: The above property holds for each ¢ > 0. It may happen u may not be smooth or even continuous
upto oU .

2.6.3 Local Estimate for Harmonic Functions

Theorem: Suppose U is harmonic in U . Then

0 ‘Dau(xo) Sr:ﬁ”“”Ll(B(xo,r)) - (D)

For each ball B(X,,I) cU and each multiindex & of order |a|=k .

2n+1 kk
(ii) Co=—t~ , C ()

a(m) " a(n)

Proof: We prove this by induction.

(k=1,..) .. (2

For k=0, =0.
1
To show ‘u(xo)‘ < ”u”Ll(B(x, r))

rna(n)

By mean value theorem

“(Xo)= § u(y)dy foreach ball B(X,r)cU

B(xy:")
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1
‘U (XO )‘ < WHUHE(B(XOJ))

C

0

‘D u(%, )‘ < r_;?”u”Ll(B(Xovr))
Hence the result.

For k=1, To show

C
|Du(x0)|srn—11||u

L(B(%.r))

where C =

Consider

)

(By Gauss- Green Theorem)

85
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fo) -

By equation (3)

u(x)| <

2n
nr

- ||u||L1(B[x,gD

o

Hence

e (o)) S atai() Mit{ape))
From (4) and (5)

2n+1n

T ()

u, (%)<

:‘D“u(xo)‘ <

Hence result is true for k=1.

1 Jul
ujl,1
N+l L(B(XO’r))

Assume that result is true for each multiindex of order less than or equal to k-1 for all balls in U . Fix
B(X,,r) U and & be multiindex with |a| =k

D%u I(DﬂU)X for some i=(1’2’3!"'!n)

where | 8| =k —1. Consider the ball B(xo 8
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Du(%,)| =‘(Dﬂu)

X

<Koy
r

- r ... (6
{eefs ) (©)
r
If XE@B(XO,E) then
B(x,%rjc B(x,,r)cU
L k-1
By assumption, in the ball B(X,Trj

2 nk(l:lﬂm o) )
a(n)(k r)

‘Dﬁu(xo)‘ <

From (6) and (7)

k —l jn+k1 ||u||L1(B(x0,r))
r

(2n+lnk)k

< a(n) K ”u“Ll(B(XO'r))

Since,

l K n<1 k>2
> 2(k—1) forall k=

Hence result holds for |a|=k .
2.6.4 Liouville’s Theorem

We see that there are no nontrivial bounded harmonic functions on all of R"

Theorem: Suppose u:R" — R is harmonic and bounded. Then U is constant.

Proof: LetX, € R",r >0, then by mean value theorem
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= J. uvds ( By Guass Green’s theorem)

1 (2Y)
|u(x)|£a(n)( j (B(x.r))
Hence
o 0= 2 (2] bl
2n+l
i )II e
2n+l
||U () —>0asr—0
Hence Du=0.

So U is constant.

Theorem: Representation Formula
Let f €CZ(R"),n>3. Then any bounded solution of —au= f in R’ (1)

of the form
u(x):j®(x—y)f(y)dy+c (XER”)
Rn
For some constant ¢ and ®(x) is the solution of Laplace’s equation.
Proof: Since ®(x)—>0 as [¥ — for n>3

= @(x) is bounded.
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Let U be a solution of equation (1) which is represented as

u= _[d)(x—y) f(y)dy

and it is bounded.

Since f € C*(R")and ®(x)is bounded forn >3 LetT be another bounded solution of equation (1)

Definew=u-u

Aw =0
and Wis bounded (--- difference of two bounded functions)
By Liouville’s theorem
W =constant
oru—u=-C
=>Uu=u+cC

This is the required result.

Note: For n=2, @ (x) = 2_—1|0g|x| is unbounded as |X| —>o0and so may be
T
_[@(x—y) f(y)dy
R2

2.6.5 Analytically

Theorem: If U is harmonic in U then u is analytic inU .
Proof: Suppose that X, be any point in U . Firstly, we show that Ucan be represented by a convergent

power series in some neighbourhood of X; .

Let y:%dist(xo,é’u)

Then M=

1
a(n)rn ”u“Ll(B(xO,Zr)) <o - (1)

for each x € B(X,,r), B(x,r)=B(X,,2r)cU

By estimates of derivatives

C

‘D“u(Xo )‘ < rnlik ||U||,_1(B(XO,,))
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X _(2“*lnk)kf e
where ¢, TN or each|a|=
2n+lnk
So HD“U(X) B(%.r)) (05( ) nJ)rk ” ||L1 %o.))

w(z2fi

By Sterling formula

1
k+=
lim -1
k—0 k!ek N \/Eﬂ'
— k¥ <ckleX, where c is constant.
Hence,
| < |
. (3)
for some constant ¢ and all multi indices & .

Furthermore, the Multinomial theorem implies

|t

:(1+...+1)k = ..(4)

o
where |a!< n“g!

Using (4) and (3) in (2)

D“u(x,)

o]
2n+1r.]2e
<Mc o!
r
Taylor series foru at X; is

ZM(X_XO)a

p al

The sum taken over all multiindices.

n+l .\l
; <M 2n ce“nlg !
L"(B(%.r)) r

- (@)
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We claim that this power series converges, provided

|X—Xo|<%
2" n%e

To verify this, let us compute for each N

The remainder term is

2, DU+t (x=%))(x=%)"

Ry (X)= >,

N a!

For some 0 <t <1, tdepending on x.

"inze )" ro )
‘RN(X)‘SCMZ[ r ](zmznse]

l N
<cM (—j
HZ;' 2n

gﬂ_m as N -0
2N

= Series is converges.

So u(x) is analytic in neighbourhood of X; .

But X, is arbitrary point of U .

So u is analyticin U .

2.6.6 Harnack’s Inequality

This inequality shows that the values of non-negative harmonic functions within open connected subset

of U , are comparable.

Theorem: For each connected open set V — U , 3 a positive constant ¢, depending only on V , such that

supu <cinfu
V; \

For all nonnegative harmonic functions U in U .

Thus in particular
1
Eu(y)SU(x) <cu(y)

Proof: Let r :%dist(v,au)

vX,y eV

(1)
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Choose X,y €V,[x—y|<r. Then

B(x.2r) B(v.r)
=2—1nB(y’r)udz =2—1nu(y)
= 2"u(x)>u(y) .. (2
Interchanging the role of x and y
2"u(y)=u(x) .. 3
Combining (2) and (3)
2“u(y)2u(x)22—1nu(y) X,y eV

Since V is connected, V' is compact, so vV can be covered by a chain of finite number of balls {Bi}i:1

such that B, B, #0 for i j each of radius %

Therefore,
U(X)ZZ%N u(y) X,y eV
u(x) Z%u(y)

Similarly,
cu(y)=u(x)

So, %u(y)SU(x)scu(y) X,y eV

2.7 Green’s Function:

Suppose that U = R" is open, bounded and 6U is C'. We introduced general representation formula for
the solution of Poisson’s equation

—Au=f InU .. (D)
subjected to the prescribed boundary condition
u=g on ou ... 2
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Theorem: (Derivative of Green’s function)

Derive the Green’s function of equation (1) under the initial condition (2).

Proof: Let u e C? (U) is an arbitrary function and fix xeU , choose ¢ >0 so small that B(x,&) cU
and apply Green’s formula on the region V, =U — B(X, 8) tou ( y) and CD(y — X) :

Then, we have

Vf[U(V)ACD(Y—X)—CD(V—X)AU(y)]dy

- [[u 2200ty 2D sy

where v denoting the outer unit normal vector on 0V, . Also A®(x—y)=0 forx=y.

Then
—I@(y—x)Au(y)dy
o0 (y-x) aU(y)}
= u(y)———=-d(y-x ds(y ..(3
8U+6J;(x,a){ ( ) v ( ) ov ( ) ()
Now
au(y)
S @000 <Pl [0y fes()
< "l—o(¢) >0 ase&—0 .. (4
Also
J a2 as(y)= [ u(y0 2 as(y)
B(x,%) aB(0,5)
Now
__ 1y
Dd(y)= na(n)|y|" ,y=0
y _—Y oD
T s e st
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1

=———— [ u(y)ds(y)

na(n)e B(x.e)

<f> u(y)ds(y)—u(x) a &—>0 ... (5

B(x,5)

Using (4) and (5) in equation (3) and making ¢ — 0

—J(I)(y—x)Aydy:J;{u(y)%‘/_x)—@(y—x)s—i}ds(yﬁu(x)
(y#x)
Thus
)= {0002 P as(y)- [oy-xauey o

This identity is valid for any point x U and for any function ueC?(U)and it gives the solution of

problem defined by equation (1) and (2) provided that u(y),s_u are known on the boundary 6U and the
12

value of Au in U . But S_t is unknown to us along the boundary. Therefore, we have to eliminate g_l:
to find the solution. For it, we define a correction term formula ¢=¢"(y) (for fixed x) given by the
solution of

Ap"=0 inu

¢ =d(y—x) on oU (D)

Let us apply Green’s formula once more,
0" ou
A X _ XA d = = _ == d
l![U(y) ¢ —¢*Au(y)]dy a{[U(y) ¢ av} s

Then we have

—£¢XAu(y)dy:i{u(y)%¢:—¢xS—i}dx ... (8)
Adding equation (6) and (8)
O O(y—x)—¢"
u(x)=—[[@(y=x)-¢" (y)]Aau(y)dy— | it (;(3 ’ (y)]U(y)dy . (9)

Now we define Green’s function for the region U as
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G(xy)=@(y-x)-¢"(y) (x,yeU,x=y) ... (10)
From equation (9) and (10)

oG (X,
U(X)=—IG(X,V)AU(y)dy—IU(y)%ds(x) .. (1)
U ou
oG (X,
where (—Vy) =D,G(x,Y). v(Y)is the outer normal derivative of G with respect to the variable y. Also

FfOU

we observe that equation (11) is independent o 5
1%

Hence the boundary value problem given by equation (1) and (2) can be solved in term of Green’s function
and solution is given by equation (11) is known as Representation formula for Green’s

Function.

Note: Fix xeU . Then regarding G as a function of y, we may symbolically write
-AG=4, inU
G=0on oU
where O, denoting the Dirac Delta function.
2.7.1 Symmetry of Green’s Function
Theorem: Show that for all x,y eU,x=y, G(X,y) is symmetricie. G(x,y)=G(y,X).

Proof: For fix x,yeU,x=y

Write

v(z)=G(x,z),w(z)=G(y,z) (zeV)
Then

Av(z)=0(z#x),Aw(z)=0(z#Y)
and w=v=0 on oU.

Applying Green’s formula on V =U —[B (x,e)UB(y, g)] for sufficiently small & >0 yields.

ow ov ov ow
as({,g)(vg_ngdsu = j (WE_VEde(y) .. (D

v denoting the inward pointing unit vector field on dB(x,&)UdB(y,¢).

Now W is smooth near X, so
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Jos

<ce" >0 as €—>0 .. 2

I éﬂvds
1%

< ” DW”BB(X,&)
0B(x,¢)

We know that V(z)=®(z—-x)—¢"(z), where ¢" is smooth in U .Thus

lim ﬂst=lim ai)(x—z)w(z)ds=w(x)

0 0
o aB(x,&) ¢ i aB(x,) v

Now we have

Similarly,

Therefore from equation (1) , we have

w(x)=v(y)
=G(xy)=G(y,x)

Hence proved.

2.7.2 Green’s Function for a Half Space

Definition: If X=(X,,...,X,4, X, ) € R}, its reflection in the plane OR] is the point

K= (X, Xy 10 X3 ) -
Definition: Green’s function for the half space R is
G(x,y)=@(y-x)-(y-X) (x,yeRf,x;ty)
Example: Solve the boundary value problem
Au=0 in R
u=g on OR!

with the help of Green’s function.
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Solution: LetX,yeR!,X#Y.

By definition, G(X,y)=®(y—X)-¢"(y)

We choose the corrector term
#*(y)=2(y-%)

where % is reflection of X w.r.t. OR! .

Clearly A" =0 jn R]

Now
D (y-%)= = =3
n(n-2)a(n)ly-¥
oD v Yi—X%
_y_x_ ;
8y1( ) ne(n)|y —%|
Fo_ 1 ()
o na(n)ly-%" a(n)ly-"
R 1
7 = +(Yo +X,)

Adding A®(y-X)=0 on R} |y—x|=(y-X)

So  O(y-%)=0(y-x)
Hence both conditions are satisfied.

So, Green’s function

G(x,y)=®(y—-x)-DP(y-X) iswell defined.

So, using the representation formula

=0-— _[ (x,y)ds(y)

(1)
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G, \_pao. G
o (xy)=DG= ayn(x,y)
oG _op, v 0D
oy, oy, ) Ty, V)
_ Yo — X, _ Yo + X,
na(n)ly-x" na(n)ly-x
2X, "My vl = v_¢
e (onR?, [y x| =]y - x])
u(x)= 2 9(y) ds(y) (xeRD)

nee(n) = |x — y|”
This is the required solution and is known as Poisson’s formula.
The function
2X 1

K(x,Vy)= n RY, OR!
(X Y) na(n)|x_y|” (Xe ye )

is Poisson’s kernel for R .
2.7.3 Green’s Function for a Ball
Definition: If xeR"—{0}, the point X:% is called the point dual to x with respect to 6B(0,1)
Definition:  Green’s function for the wnit ball is G(X,y)=®(y—x)-®(|]x(y-X))
(x,yeB(0,1),x=y).
Example: Solve the boundary value problem

Au=0 in B(0,1)

u=g on 0B(0,1)

with the help of Green’s function.
Solution: Fix any point x€B”(0,1) and y = x
The Green’s function is given by
G(xy)=®(y-x)-D(y)

We choose ¢ (y)=@(]¥(y-%))



Laplace Equation and its solution

99

where % dual of X w. r.t. 6B(0,1)

As we know @ (y—Xx) is harmonic. So @ (y—X) is also harmonic for y = x.. Similarly |x*" @ (y - %)

is harmonic for y # X.

Or ®(|x|(y—X)) is harmonic for y = x
so, Ag”=0in B(0,1)

On 0B(0,1):

But

=[x-yf
So. 4(x) = ((y~R) = B(y-).
Hence both conditions of ¢” (y) are satisfied.
So
G(x,y)=®(y-x)-@(|]x|(y—x%)) iswell defined.

Hence solution of given problem is given by

u()=- | g(y)5ds(y)

Now on 6B(0,1)

oG oG : ,
—— ="V, v being the unit normal.

ov oy
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oG y 0G
=17 ~ Ji Yy =1
G X — Y yI|X| —X

_ yi |X|2 _yl
ne (n)|x-y]|
oG (2-147)

woy e (n)x—y["
This is the required solution.
2.7.4 Energy Methods

Theorem: (Uniqueness)

There exists at most one solution u e C? (U) of the boundary value problem

—Au=f inU
u=g on ou
where U is open, bounded and oU is C*.
Proof: Let U be another solution of given problem.
Let w=u-u then Aw=0 in U
w=0 on oU

Consider

_[WAwdx = I w(wxi) dx
U U

X

Integrating by parts

=—J.WX,WXVdX+ f w, wvds , v being the unit normal
ou

=—[|Dwf* dx+0
U
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=|Dw[*=0 in U
=Dw=0 in U
= W= constant in U
But w=0 in oU
Hence w=0 in U
=>u=Uu
Hence uniqueness of solution.

Dirichlet’s Principle: Let us demonstrate that a solution of the boundary value problem for Poisson’s
equation can be characterized as the minimize of an appropriate functional.

Thus, we define the energy functional

| [W]zj%mwr ~ widx

U

w belonging to the admissible set A= {W eC’(U)|w=g onouU }

Theorem: Let ueC? (U) be a solution of Poisson’s equation. Then

I[u]=rvrv|€i£1 I [w] ..o (D
Conversely, if u e A satisfies (1) then u is a solution of boundary value problem
~Au=f inU
u=g onouU .. (2

Proof: Let we A and u be a solution of Poisson’s equation. So

—Au=f in U

:>O:.|.(—Au— f)(u—w)dx

U

:-LJ;Au(u—W)dx—j f(u—w)dx

U
Integrating by parts
0= _[ Du.D(u—w)dx - j (u—w) Du.vds—j f (u—w)dx
U ou

U

:I(Du.Du— fu)dx—O—.[(Du.DW— fw) dx
U U
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:>l_[(|Du|2 — fu)dx =£(DU.DW— fw)dx

= _[(| Du|2 -~ fu) dx < _[B| Du|2 + %| DW|2 -~ fw} dx  (By Cauchy-Schwartz’s inequality)

U

1 1
So I[E|Du|2— fu}dxsj‘[ijf— fw}dx

Hu]< 1]w]
Since ue A, So

[ [u]=min1[w]

weA

Conversely, suppose that I[u]=minI[w]
weA
Forany veCy(U), define i(z)=1[u+zv] , zeR
So i(7) attains minimum for z =0
i'(r)=0 for £=0
i(7)= E|Du+rDv|2—(u+rv)f}dx
U
1 2 2
:J’{E(|Du| +7°|Dv| )+rDuDv—(u+rv)f}dx
U
i'(O):“Du.Dv—Vf]dx
U

Integration by parts
0= —.[vAudx + j Du.vds — Ivfdx
U ou

0= [[~Au— f]vdx [vecy(U)]

This is true for each functionv e C;" (U ).

SO Au=—-f in U.

So u is a solution of Poisson’s equation.
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HEAT EQUATIONS

Structure

3.1 Heat Equation — Fundamental solution
3.2 Mean value formula
3.3 Properties of solutions
3.4 Energy methods for Heat Equation
3.1 Definition: The non- homogeneous Heat (Diffusion) equation is
u, —Au=f(xt) (D)

where xeU <R", f:Ux[0,0)—>R, u:Ux|[0,0)—>R, the Laplacian A is taken w.r.t. spatial

variable x, and the function f is given while we have to solve this equation for the unknown function u.
If f (x,t) =0, then the equation
U -Au=0 o (2)
is known as homogeneous heat equation.

Physical interpretation: In typical applications, the Heat equation represents the evolution in time of the
density u of some quantity such as Heat, chemical concentration, etc. If V < U is any smooth subregion,
the rate of change of the total quantity within V equals the negative of the net flux through oV .

d =
EJUdX = —i F.vds

F being the flux density. Thus
u, =—divF .. (3)

where V is arbitrary.
Theorem: (Fundamental Solution)

Find the fundamental solution of homogeneous Heat equation
u-Au=0 in  Ux[0,) ()

where U — R" is open.
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Proof: It can be seen from the equation (1) that first order derivate involves w.r.t. to t and second order

derivate w.r.t. the space variables X, X,,..., X, . Consequently, if u solves the equation (1), so does
u(Ax,A’t) for 1eR.

So, we seek a solution of equation (1) of the form

1 X
u(x,t)—ﬁvitﬁj e (2)

for XxeR", t>0.Here, «, [ are constants to be determined and the function v: R" — R must be find.

Put y = iﬂ in equation (2), we have
t

u(x,t)ztiav(y) .. (3)

Differentiating (3) w. r. t. tand x

-a SyDv

Y% :ta+1v(y)_ta+1

1
tcx+2ﬂ

Av

Using these expression in equation (1) and simplifying
av(y)+,6’yDv+t2%Av=O @)

Now, we simplify the equation (4) by putting g = 1 , S0 that the transformed equation involves the

2
variable y only and the equation is

av(y)+By.Dv+Av=0 .. (5
We seek a radial solution of equation (5) as
v(y)=w(r) where r=|y| ...(6)

where W:R > R.
From equation (5) and (6), we have
alyl
oy
n yi ar 1 1 yi2
and VnyI =W (r) (?ja +W (I‘) {F - —3}

i r

v, =w(y) =wﬂm%- Cly|=1)
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Av(y)=w"+co'(r)(n—_lj

r

Using value of Av(y) in equation (4), we get

W (r n-=1) |
W+(E+TJW+C¥W:O (7)

Now, if we set ¢ zg and multiply by r"in equation (7).

Then we have

(r“-lw')'+(rn;N)' =0 .. (8)

Integrating equation (8)

N1,

rw .
rw +7 =a , where a is a constant

Assuming limw,w'=0, we conclude a=0,so

r—oo

W =—=rw ... (9
> €)
Integrating again, we have some constant b
w=be 74 ... (10)

where b is the constant of integration.

Combining (2) and (10) and our choices for ¢, g, we conclude that

2
Leﬂ solves the Heat equation (1)

t% 4t
To find b, we normalize the solution
_[ u(x,t)dx=1

R"

t%Jﬂexadx:l

(2t =1

n
t2
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1

b=
(47[)%

Here the function
1 - eXA;(XGR“,t>0)
D (x,t)= (4rt)”

0 , (Xe R" t SO)

is called the fundamental solution of the Heat equation.
Remarks: (i) @ is singular at the point (0,0).
(ii) Sometimes, we write ®(x,t) = CD(|x|,t) to emphasise that the fundamental solution is radial in the
variabler.
Theorem: Solution of Initial value problem
Solve the initial value (Cauchy) problem
u —Au=0 in R" x(0,0) ..()
u=g on R"x{t=0} .(2)

associated with the homogeneous Heat equation, where g C(R”)m L” (R”).

1 K ]
Proof: Let ®(x,t)= 7 © 4; (xeR"t>0) .. 3)
(4nt)’?
be the fundamental solution of the equation (1). From earlier article, we note that (x,t) — ®(x,t) solves

the Heat equation away from the singularity (0,0) and thus so does (x,t) > ®(x—,t) for each fixed y e R"
. Consequently, the convolution

=
u(x,t):WRjﬂe “ g(y)dy
:Rjncp(x—y)g(y)dy (4
Here, we will show that
(i) ueC”(R"x(0,»))
(i) u (xt)—Au(xt)=0 (xeR"t>0)

(iii) ( lim u(x,t)=g(x°) foreach point X eR"t>0

x,t)a(x ,0)
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,‘Xz
Proof: (i) Since the function nie 4t js infinitely differentiable with uniform bounded derivative of all
t 2

order on R" x[8,0) for §>0.

So ueC”(R"x(0,)).
(i) u, = J'nqbt(x—y,t)g(y)dy

AU = J'AQD(x—y,t)g(y)dy

-
2 U —Au=0  (since ®(x—y) is a solution of Heat equation)
(iii) Fix x° eR". Since g is continuous, given £ > 0,3 6 > 0 such that ‘g (y)-9 (x° )‘ < & Whenever
‘y—x°‘<5,ye R".
Then if \X—X°\<g

()= -| o (-0 )0 <"

Rn

< J. q)(x—y,t)‘g(y)—g(xo)‘dy

B(x°,5)

+ .f (D(x—y,t)‘g(y)—g(xo)‘dy

R”—B(xo,é)
=1+ ... (5)
Now I §5I®(x—y,t)dy:s
an

Furthermore, if |x—x°| Sg and |y—x°|> 5 then
|y—x°|s|y—x|+g£|y—x|+%|y—x°|
1
Thus |y_x|25‘y_xo‘

Consequently

J<2|g

- j O (x—y,t)dy

RMB(XO,&)
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7r2

eldtr"dr >0 as t—0"

c “
gt
Hence, if |x—x°| <g and t>0 is small enough, ‘u(x,t)—g(xo)‘<28.

The relation implies that

lim  u(x,t)=g(x°)
(xy)>(¢.0)
xeR" t—>0*

Thus, we have proved that equation u(x,t) given by equation (4) is the solution of the initial value
problem.

Theorem: Non-homogeneous Heat Equation
Solve the initial value problem
u —Au=f in R" x(0,0)
u=0 on R"x{t=0}

associated with the non-homogeneous Heat equation, where f € C? (R” x[O,oo)) and f has compact
support.
Proof:

Define U as

u(x,t)zj';n [e* 1 (y,s)dyds (xeR"t>0) ..()

:j' O (x—y,t—s) f(y,s)dyds .. (2)

where f eC/(R"x[0,0)) and f has compact support.

Then

(i)ueC/(R"x(0,))
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(iu (xt)-Au(xt)=f(xt) (xeR"t>0)

(iii)( )Ilr(n )u(x,t)=0 for each point x° cR" (xeR",t>0)
x,t—>x°,0

Proof: (i) Since @ has a singularity at (0,0) we cannot differentiate under the integral sign. Substituting
the variable x—y =0,t—s =0 and again converting to original variable.

ut(x,t):jj®(y,s)f(x—y,t—s)dyds
D o
Since f C*(R"x[0,:0)) and ®(y,$)is smooth near s=t >0, we compute
ut(x,t):j_[cb(y,s) f (x—y,t—s)dyds
>
+ [ @(y.t) f(x—y,0)dy (By Leibnitz’s rule)

R"

o’ ‘ & i1
)= | D(y, f(x—y,t—s)dyd i, j=1..n
axax, Y M (9:9) o, (X yt=s)dves (i, ] )

Thus, u,D’ueC? (R” x(O,oo)).

(if) Now
ut(x,t)—Au(X,t)ZJ:!CD(%S)K%—AXJf(x—y,t—s)}dyds +Jn(b(y’t)f(x_y’o)dy
chp I [(——A jf(x—y,t_s)}dyds

+i‘é[q)(y,s)ﬁ(;_f—ij f (x—y,t—s)}dyds +F;|;<D(y,t) f (x—y,0)dy

=1, +J, +K .3
Now

J=(I,

+HD f” )]:J'CD (y,s)dyds < ec
0R"
Also, we have
t 0
|g::!'Fz[Kg_Ay)q)(y,s)}f(x—y,t—S)dde +F;[CI)(y,g)f(X—y,t—8)dy
_'[cp(y,t)f(x—y,o)dy

R"

:jq)(y,g)f(x—y,t—g)dy—K .. (4)
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Since @ solves the Heat equation.
Combining (2) —(4), we have

u, (X, t)—Au(x,t)= !gl_r>n0 _[CI)(y,g) f(x—y,t—g)dy
=f(xy) (xeR"t>0)

(iii) u(x,t)=

ot—

.[CD(y,s) f (x—y,t—s)dyds
||u||L°°(R") S”f”L”“(R”)J.,[CD(y’S)dde

t
=[ ][ as =] [t
0
Taking limitas t >0
limu(x,t)=0 foreach xeR".
t—0

3.2 Mean-Value Formula for the Heat Equation
Let U = R" be open and bounded. Fix atime T >0.
Definition: The parabolic cylinder is defined as

U, =U x(O,T]
and the parabolic boundary of U; is denoted by I'; and is defined as

Iy :(UT)_(UT)

L ——

GEETD
. By R

The region Ur
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Interpretation: We interpret U; as being the parabolic interior of Ux[O,T]. We must note that U,
include to top U X{t:T}. The parabolic boundary I'; comprises the bottom and vertical sides of

U x[0,T], but not the top.

Definition (Heat ball): For fixed X€ R",t eRand r > 0, we define

Euiﬁ):%yﬁ)eRM

s<t and d)(x—y,t—s)zrin}

E(X,t;r)is a region in space-time. Its boundary is a level set of fundamental solutions ®(x—y,t—s)

for the Heat equation. The point (X,t) is at the centre of the top. E(X,t;r) is called a Heat ball.

(x.t)

E(x,t;r)

Heat Ball
3.2.1 Theorem: Mean-Value Property for the Heat Equation

Prove that
” | —y)| dyds .. (1)

for each Heat ball E(X,t;r)cU; . It is assumed that U e C; (U, ) solve the homogeneous Heat equation
U —Au=0 in R"x(0,) . (2)

Proof: The formula (1) is known as mean-value formula. We find that the right hand side of (1) involves
only u(y,s) for times s<t. It is reasonable, as the value U(X,t)should not depend upon future times. We
may assume upon translating the space and time coordinates that

x=0,t=0 .. 3)

So we can write Heat ball as

E(r)=E(0,0;r) - (4)
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and set

p(r)= ” (y, s)|y| dyds

=0
” ry,r s dyds (by shifting the variable) .. (5

Differentiating (5), we obtain

0 ffon (S o

2 2
= rnl+1 ” {yiuy [%J+2us (%}} dyds (Again shifting to original ball)
E(r)

=A+B ... (6)
We introduce the useful function
z//z—glog(—47zs)+%+nlogr .. (7)
Then
w =0, on  OE(r) ...(8)
Since,
®(y,—s)=r" on JE(r) ..9)

be definition of Heat ball.
Now, we use (7) to write

l n
B=—T5 Ej(_[) 4usi2=1: y;w, dyds

= —% _[(_[)4nusy/+4zl“usyl y,wdyds ... (10)
E(r 1=

There is no boundary term since y =0 on OE(r).

Integrating by parts with respect to s, we find

B=

r:1L+1 J‘_f _4nusl// + 4iuyr yi‘//sdyds
=1 i1

= ” —4nusa//+4Zu y,( |y| deds
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This implies
¢'(r) =A+B
— _U{ 4nAuy1—%Zn:uyl Y, }dyds
i=1
51
= > EJ'(.[)4nuyll//yl u,y,dyds =0
Therefore, ¢ is constant.
Thus #(r)=limg(t)=u(0,0) {Ilm HM dyds} 4u(0,0)
t—0 t—0 t

2 2
lﬂjj%dyds:ﬂ%dydsﬂ
& S ) S
From equation (4) and (11), we write

u(x,t)=%¢(r)

From (5) and (13), we have

Hence proved.
3.3 Properties of Solution

3.3.1 Theorem: Strong Maximum Principle for the Heat Equation

Assume u e C/ (U; ) nC(U; ) solves the Heat equation in Uy . Then

Q) n}?xu = rT;aTlxu

(i) Furthermore, if U is connected and there exists a point (Xo,to) eU; such that
u(Xy,ty) = maxu

Then u is constant in Uto.

Proof: Suppose there exists a point (X,,t, ) €U; with

.11

.(12)

..(13)

.. (14)
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u(X,t,)=M = maxu

It means that the maximum value of u occur at the point (Xo,to).

Then for all sufficiently small r>0,
E(X:t;r)cU
By using the mean-value property, we have

M =u(X,1t)

ﬂ )| dyds <M .. (1)

E(%o.toir

Since

1 %~ y|2
1=— ———dyds
ar E(XJO.T[):r) (to - 5)2

Form equation (1), it is clear that equality holds only if u is identically equal to M within E(xo,to; r) .
Consequently

u(y,s)=M for all (y,s)€E(%,t;r)

Draw any line segment L in U; connecting (Xo,to)with some other point (yO,So) eU,, with § <f;.
Consider

r,=min{s>s,|u(x,t)=M for all points(x,y)eL,s<t<t,|
Since u is continuous, the minimum is attained. Assume [, >S,.Then
u(z,,1,)=M
for some point (Z,,1,) on LNU; and so
u=M on E(z,,1,;r) forall sufficiently small r>0

Since E(z,, ;1) contains LN{r,—o <t<r} for some small >0, which is a contradiction.

Thus

Hence

u=M on L ...(2)
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Now fix any point x U and any time 0<t<t;. There exists points {X;, X,,...,X,, X} such that the line
segments in R"connecting X;_; to X; liein U for i=1,...,m. (This follows since the set of points in U
which can be so connected to x, by a polygonal path is nonempty, open and relatively closed in U ).
Select times £, > >...>t =t. Then the line segments in R™ connecting (X_,t_;)to (%t )(i=1..,m)
lie in U; . According to step 1, u=M on each such segment and so u(x,t)=M .

Remark: 1. From a physical perspective, the maximum principle states that the temperature at any point
X inside the road at any time (0<t<T) is less than the maximum of the initial distribution or the

maximum of temperature prescribed at the ends during the time interval [0,t].

2. The strong maximum principle implies that if U is connected and u e C? (U, )~C (U, ) satisfies

u—Au=0 in U;
u=0 on U x[0,T]
u=g on Ux{t=0}

where g >0 then u is positive everywhere within U; if g is positive somewhere on U . This is another
illustration of infinite propagation speed for disturbances.
3. Similar results holds for minimum principle just by replacing “max” with “min”.

3.3.2 Theorem: Uniqueness on bounded domains

Let geC(T;), f €C(U;). Then there exists at most one solution u e C/ (U; ) C (U ) of the

initial/boundary-value problem

u —Au=f inU; (1)
u=g onl; '
Proof: If u = Uare two solutions of (1). Then
u —Au=f inU; @)
u=g onl; '
and
u-Au=finU, 5

U= g onI’;
Let w= i(u —U), then from equation (2) and (3), we have

W, —Aw=(u, -0, )-A(u-0)=0
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w=0 on I}

apply previous theorem to W= i(u —G) to get the result.

3.3.3 Regularity

Theorem: Smoothness
Suppose U € C}(U; ) solves the heat equation in Us . Then
ueC”(U,)

This regularity assertion is valid even if u attains non-smooth boundary value on I'; .
Proof: We write

C(xtr)={(y.s)|x-y|<rt-r*<s<t}
To denote the closed circular cylinder of radius r, height r?, and top centre point (X,t) . Fix
(%t ) €U and choose r > 0so small that C=C(X,,t,;r) U, .

Define also the smaller cylinder

f _3 n .r
C :C(Xo,to,zrj,c :C(Xoytoazj,

which have the same top centre point (X;,t,). Extend ¢ =0in (R"x[0,t,])-C

Assume that ueC” (U ) and set v(x,t)=¢ (X t)u(x,t) (xeR",0<t<t,)
Then
V, =¢U, + S U,Av =CAu+2D¢ .Du+uAd
Consequently
v=0 on R"x{t=0} .. (1)
and
V,—Av=¢u-2D¢Du-uAl = in R"x(0,t))

Now, set

t
j @ (x-y,t—s)f(y,s)dyds
0OR

n

We know that
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{Vt—A”: fin R”X(O,to) @

V=0 onR"x{t=0}

Since |V|,|V| < Afor some constant A, previous theorem implies v =1, i.e.
t
jch (x—y,t—s) f(y,s)dyds
0R"

Now suppose (X,t) eC". As ¢ =o0of the cylinder C, (1) and (3) imply

u(x,t)= J'J'CD (x—y,t- s)[ )—AS(y,s))u (y,s)—2D§(y,s).Du(y,s):|dyds

Integrate the last term by parts:

u(x,t)=H[(D(x—y,t—s)(cjs(y,s)+Ag’(y,s)+2DYCD(x—y,t—s).Dg’(y,s))]u(y,s)dyds

If u satisfies only the hypotheses of the theorem, we derive (4) with U° =17, *Ureplacing U,7], being the

standard mollifier in the variables x and t, and let ¢ — 0.

Formula (4) has the form
u(x,t):”K(x,t,y,s)u(y,s)dyds ((X,t)GC")
¢
where
K(xt,y,s)=0 forall points (y,s)eC
Since ¢ =10n C",
Note that K is smoothon C—-C".
We see Uis €~ within C":C[xo,to;%rj

Theorem: Local Estimate for Solutions of the Heat Equation

There exists for each pair of integers k, 1=0,1,..., a constant C,, such that

max
of x e

= k+2|+n+2 ” ”L1 (c(xtir))

for all cylinder C(X,t;%) < C(x,t;r)cU; and all solutions u of the Heat equation in U .
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Proof: Fix some point in U;. Upon shifting the coordinates, we may as well assume the point is (0,0).
1 1
Suppose first that the cylinder C(1)=C(0,0;1) lies in U; . Let C(Ej =C [O,O;Ej

Then
1
U(X,t)=”K(x,t,y,s)u(y,s)dyds [(X,t)GC(ED
c(®)
for some smooth function K .

Consequently,

Dth'u(x,t)| < ” |Dt' DK (x,t, Y, s)||u (v, s)|dyds
c@)

=Cy ”u”u(c(l))
for some constant C,;.
Now suppose the cylinder C(r)=C(0,0;r)liesin U; . Let C(%):C(0,0;%),

We define
v(x,t)=u(rxr’t)
Then V, —AV =0 in the cylinder C(1).

According to (1)

1
DX Dt'v(x,t)| <Cy ||V||L1(c(1)) ((X feC (ED

But Dth'v(x,t):r2'+"kaDt'u(rx,r2t)
1
and v L(c() ZWMU L(c(r)
Therefore,
C
k!
rgzraé); Dx Dtu‘ s r2I+klf:n+2 ”u”Ll(C(r))

Note: If u solves the Heat equation within U+ , then for each fixed time 0 <t <T, the mapping

X—u (X,t) is analytic. However the mapping t—u (X,t) is not in general analytic.
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3.4 Energy Methods

(a) Uniqueness
Theorem: There exists at most one solution u e C/ (U, ) of
u —Au=f inU; (1)
u=g onl; '

Proof: If (0 be another solution, w=u -0 solves

Set
e(t):fwz(x,t)dx (0<t<T)
U
Then
é(t)=2_[wwtdx
U
=2J.WAWdX
V]
=—2[|Dw* dx <0
U
and so

e(t)<e(0)=0 (0<t<T)
Consequently w=u—ad in U;.
(b) Backwards Uniqueness

For this, suppose U and U are both smooth solutions of the Heat equation in U; , with the same boundary
conditions on oU .

u—-Au=0in  U; )
u=g ondUx[0,T] -
0 —-AG=0in U
.2
{ d=g ondUx[0,T] @
for some function g.
Theorem: Suppose u,d e C*(U; ) solve (1) and (2). If u(x,t)=0(xt) (xeU)then
u=a within U; .
Proof: Write w=u —U and set
e(t):J.WZ(x,t)dx (0<t<T)
U
Then
é(t)=—2|Dwf" dx )
U

Also
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&(t) =—4[ Dw.Dwdx
=4jAwwtdx (4
=4J.(Aw)zdx

Since w=0 on oU |,
I| Dw|2 dx = —J wAWdX
U U

[ o) [ omr

From (3) and (4)

< ( J wzdx][4 ! (Aw)® dx}

=e(t)&(

Hence

s(t)e(t)=(e(t)) (0<t<T) .. (9)
Now if e(t)=0forall 0<t<T, we are done. Otherwise there exists an interval [t,,t,] = [0, T ] with

e(t)>0 for t; <t<t,, e(t,)=0 ... (6)
Write

f(t)=loge(t) (t,<t<t,) .(D
Then

-4t
If 0<7 <Lt <t<t, then
f((1-7)t +et)<(1-7) f (t,)+7f (1)
Also
e((1-7)y +2t)<e(t) "e(t),
and so
O<e((l-r)y+rt,)<e(t) "e(t,)” (0<7<l)

This inequality implies e(t) =0 for all times &, <t <1, a contradiction,
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WAVE EQUATIONS

Structure

4.1 Wave Equation — Solution by spherical means

4.2 Non-homogeneous equations

4.3 Energy methods for Wave Equation
4.5 Wave Equation
The homogeneous Wave equation is

u, —Au=0 (D)

and the non-homogeneous Wave equation

Uy —Au=f )

Here t>0 and x €U , where U < R"is open. The unknown is U:U x[0,00) = R,u=u(x,t), and the
Laplacian A is taken with respect to the spatial variables X = (X1 Xn). In equation (2) the function
f :U x[0,00) > Riis given.

Remarks: 1. The Wave equation is a simplified model equation for a vibrating string (n=1). For n=2, it
is membrane and it becomes an elastic solid for n=3. u(x,t) represents the displacement in some direction
of the point x at time t > O for different values of n.

2. From physical perspective, it is obvious that we need initial condition on the displacement and velocity
at time t=0.

Solution of Wave equation by spherical means (for n=1)

Theorem: Derive the solution of the initial value problem for one-dimensional Wave equation
Uy —Ug =0 in Rx(0,0) .o (D)
u=g,u =h on Rx{t=0} .. ()

where g, h are given at time t=0..

Proof: The PDE (1) can be factored as

(2+QJ(Q—Eju—u -u, =0 3
ot ox)\ot ox o - 3)
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Set

0 0
v(x,t)_(a—&ju(x,t) .. (4)
Then, equation (4) becomes
Vo (X,t)+v, (xt)=0 (xeR,t>0) .. (5

Equation (5) becomes the transport equation with constant coefficient (b=1).

Let v(x,0)=a(x) ... (6)

We know that the fundamental solution of the initial-value problem consisting of transport equation (5)
and condition (6) is

v(x,t)=a(x-t),xeR,t>0 . (D
Combining equation (4) and (7), we obtain
U (xt)—u, (xt)=a(x—t) in Rx(0,) .. (8
Also
u(x,0)=g(x) in R .. (9)

By virtue of initial condition (2), Equations (8) and (9) constitute the non-homogeneous transport
problem. Hence its solution is

t
u(x,t (x+1) +Ia x+ s—t)( —s)ds
0

X+t

:g(x+t)+EIa(y)dy - (10)  (x+t-2s=Y)

x—t

The second initial condition in (2) imply
a(x)=v(x,0)
=U,(x,0)-u,(0,0)

=h(x)-g'(x),xeR .. (11)
Substituting (11) into (10)

x+t

u(x,t)=g(x+t)+ I[h -g'(y)]dy

X+t

_[g X+t)+g(x— t]+lj h(y)dy ...(12)

for xeR,t>0.

This is the d” Alembert’s formula.
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Application of d’ Alembert’s Formula
Initial/boundary-value problem on the half line R, = {X > O} .

Example: Consider the problem

Uy — Uy in R, x(0,0)
=g, U =h on R, x{t=0} ..(1)
u=0 on {x=0}x(0,0)

where g, h are given, with

9(0)=0,h(0)=0. . ()

Solution: Firstly, we convert the given problems on the half-line into the problem on whole of R We do
so by extending the functions u, g,hto all of R by odd reflection method as below we set.

~(x,t):{ u(xt) forx>0,t>0

(—xt) forx<0,t>0 - ©)

g(x) forx>0
-g(x) forx<0 -3

- 109, 0

x) forx<0

Now, problem (1) becomes

l]tt :Uxx in RX(O,OO)} (6)

(=§,0, =honRx{t=0}

Hence, d’ Alembert’s formula for one-dimensional problem (6) implies

X+t

G(x,t :—[g X+1)+g(x- t]+1_|. h(y)dy (7)

X—t

Recalling the definition of U, g,ﬁ in equations (3)-(5), we can transform equation (7) to read for
x>0,t>0

%[g(x+t)+g(x—t)]+% J. h(y)dy

o if x>t>0
u(xt)= » _ (8)

%[g(xﬂ)—g(t—x)}r% J. h(y)dync Osxs<t

—X+t

Formula (8) is the solution of the given problem on the half-line R, = {x > 0} .
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Solution of Wave Equation (for n=3)

Theorem: Derive Kirchhoff’s formula for the solution of three-dimensional (n=3) initial-value problem

U;~AU=0 in R®x(0,) (1)
u=g on R°x{t=0} ..(2)
U=h on R®x{t=0} ..(3)

Solution: Let us assume that u € C? (R3 x[O,oo)) solves the above initial-value problem.

As we know

U(xr,t)= gg u(y,t)ds(y) ..(4)

B(x,r)
defines the average of U(.,t)over the sphere dB(X,r). Similarly,

G(xr)= <j> g(y)ds(y) (5)

oB(x,r)

H(xr)= c_f> h(y)ds(y) ...(6)

oB(x,r)
We here after regard U as a function of r and t only for fixed x.
Next, set

U=ru, ..(7)

(N

=rG,H =rH .(8)
We now assert that U solve

U,-U,=0in R, x(0,)
U=G on R x{t=0}
) R+><{t=O}
U=0 on {r=0}x(0,x)

...9)

We note that the transformation in (7) and (8) convert the three-dimensional Wave equation into the
one-dimensional Wave equation.

From equation (7)

Utt = rUtt

2
= r{u v +FUr}, Laplacian for n=3
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:(L]r)rzurr ... (10)
The problem (9) is one the half-line R, ={r >0}.

The d’ Alembert’s formula for the same, for 0 <r <t is

r+t

U(x;r,t)=%[G(r+t)—é(t—r)]+% [ H(y)dy L
From (4), we find
u(xt)= IirQU (x;r,t) ... (12)

Equations (7),(8),(11) and (12) implies that

r
G(t+r)-G(t- b
!LT{ (‘|‘r)2r ( r)+%tIrH(y)dy}
=G'(t)+H(t) (13)
Owing then to (13), we deduce
u(x,t)%{t $ g(y)ds(y)}+{t $ h(y)ds(y)} .(14)
aB(x,t) aB(x,t)
But
aB(fm)g(y)ds(y):a/B(Ll)g(tz)ds(z) ... (15)
Hence
%{(ﬁ g(y)ds(y)}z SB {Dg(x+tz)}.zds(z)
B{x.t) 8(0,1)
- Dg(y).(yzxjds(y) ... (16)

oB(x,t)

Now equation (14) and (16) conclude
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u(x,t)= <ﬁ [g(y)+{Dg(y)}.(y—x)+th(y)]ds(y) (17)

oB(x,t)

for XER3,t>0,

The formula (17) is called KIRCHHOFF’S formula for the solution of the initial value problem (1)-(3)

in 3D.

4.6 Non-Homogeneous Problem

Now we investigate the initial-value problem for the non-homogeneous Wave equation
{un ~Au=f in R"x(0,00)

u=0,u, =00onR"x{t =0} (D

Motivated by Duhamel’s principle, which says that one can think of the inhomogeneous problem as a set
of homogeneous problems each starting afresh at a different time slice t = to. By linearity, one can add up
(integrate) the resulting solutions through time to and obtain the solution for the inhomogeneous problem.

Assume that U=U(X,t;s) to be the solution of

{ Uy (- S)-Au(.,s)=0 in R"x(s,o0)
u(.,s)=0

. (2
)=0,u,(s)= f (s)onR"x{t =3 @)
and set
t
u(x,t):ju(x,t;s)ds (xeR"t=0) ...3)
0
Duhamel’s principle asserts that this is solution of equation (1).
Theorem: Solution of Non-homogeneous Wave Equation
Let us consider the non-homogeneous wave equation
U, —Au = f in R"x(0,00)
g
u=0,u =00nR"x{t =0} M
fe C[%}l(R” x[O,OO)) and n>2. Define uas
t
u(x,t):ju(x,t;s)ds (xeR"t=0) .2
0

Then
(i)ueC?(R"x[0,x))
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(ii)U, —AU=Tf in R"x(0,00)

(iii) lim u(xt)=0, lim u,(xt)=0 foreach point x’<R" (xeR",t>0).

( t)—)(xo,O) (%, t)—)(x O)

n+1 n n+2
Proof: (i) If nis odd, [2}4—7 and if nis even, [2}1:7

Also u(.,.;s) e C*(R"x[s,)) foreach s> 0and so ueC*(R"x[0,)).
Hence u e C?(R" x[0,)).

(ii) Differentiating u w.r.t t and x by two times, we have

t
u, (x,t xtt+jutxts jt(x,t;s)ds
0

U, (X, t)=u, (x,t;t)+

O t—

u, (x,t;s)ds

=f(xt)+

[y S——

U, (x,t;s)ds

Furthermore,

t

Au(x,t)= IAu(x,t;s)ds = Iun (x,t;s)ds

0

Thus,

U (X, t)-Au(xt)=f(xt) xeR"t20

(iii) And clearly u(x,0)=u,(x,0)=0 for x e R". Therefore equation (2) is the solution of equation (1).

Examples: Let us work out explicitly how to solve (1) for n=1. In this case, d” Alembert’s formula gives

X+t—s

u(x,t;s):% _[ f(y,s)dy

X—t+s

t X+t—s

u(x,t):%j _[ f (y,s)dyds

0 x—t+s

. ltX+S
ie. _EIIf y,t—s)dyds (xeR,t20)

0 x-s

For n=3, Kirchhoff’s formula implies
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u(xt;s)=(t—s) 4> f(y,s)dsS

OB(x,t—s)

So that
t
u(x,t)=I(t—s)( 4) f(y,s)dSst
0 0B(x,t-s)
1 f(y,s)
= dsd
ar '([aB(xIts) t—s
=ij [ P21 g
472.0(’)8(xr) r
Therefore,
flyt—ly—x
u(xt) 1 (t-ly |)dy (xeR%t=0)
70 B(xt) |y—X|

solves (4) for n=3.
The integrand on the right is called a retarded potential.
4.7 Energy Methods

There is the necessity of making more and more smoothness assumptions upon the data g and h to ensure
the existence of a C? solution of the Wave equation for large and large n. This suggests that perhaps some
other way of measuring the size and smoothness of functions may be more appropriate.

(a) Uniqueness

Let UcR"be a bounded, open set with a smooth boundaryoU , and as usual set
U, =Ux(0,T],I'; =U; —U,, where T>0. We are interested in the initial/boundary value problem

u,—Au=fin U;
u=g on T, . (D
u=h onUx{t=0}

Theorem: There exists at most one function u e C?(U; ) solving (1).

Proof: If Gis another such solution, then w:=u—U solves

w,—Aw=0in  U;
w=0 on I}
w,=0 onUx{t=0}

Set “energy”
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e(t)=%L_[vw2(x,t)+‘Dw(x,t)‘2dx (0<t<T)

Differentiating e(t), we have

é(t)= jwtvvn + Dw.Dw, dx
U
= J.Wt (W, —Aw)dx =0
U

There is no boundary term since w=0, and henceW, =0, on oUx[0,T]. Thus for all
0<t<T,e(t)=e(0)=0,and so W, DwW=0withinU;. Since w=0on Ux{t=0}, we conclude
w=u—-0=0inU;.

(b) Domain of Dependence

As another illustration of energy methods, let us examine again the domain of dependence of solutions
to the Wave equation in all of space.

(xo, to)

B(xo, to-t)

Cone of dependence

For this, suppose u e C? solves

U, ~Au=0 jn R" x(O,oo)
Fix X, € R",t, >0and consider the cone

C={(xt)|0<t<ty|x—x|<t,—t}.
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NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

Structure

5.1 Non-linear First Order PDE — Complete integrals

5.2 Envelopes

5.3 Characteristics

5.4 Hamilton Jacobi equations (Calculus of variations, Hamilton ODE)

5.5 Legendre Transform

5.6 Hopf-Lax Formula

5.7 Weak Solutions and Unigqueness
5.1 Definition: Let U is an open sunset of R"* X :(x1 xn) eR"and let u:U < R" — R. A general form
of first-order partial differential equation for u=u (x) is given by

F(Du,u,x)=0, (D

where F : R"x RxU — Ris a given function, Du is the vector of partial derivatives of Uand u(x) is the
unknown function.

We can write equation (1) as
F=F(p,zx)
= F (P Py Py s Z X0 Xy eer X))

for peR", zeR, xeU.

Here, “p” is the name of the variable for which we substitute the gradient Du and “z” is the variable for
which we substitute u(x) . We also assume hereafter that F is smooth, and set

DpF:(Fpl,sz,...,Fpn)
D,F =F,
D, =(F,.F,.-..F. )
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Remark: The PDE F(Du,u, X) =0is usually accompanied by a boundary condition of the form u=g

on oU. Such a problem is usually called a boundary value problem. Here our main concern is to search
solution for the non-linear PDE

Complete Integral: Consider the non-linear first order PDE
F(Du,u,x)=0 (D)

Suppose first that A= R"is an open set. Assume for each parameteraz(al,...,an)e A, we have ac?
solution

u=u(x;a) . ()
of the PDE (1) and
i ual uxlal uxna1 ]
(Dau,Dfau): o Ui e .. 3)
Uy U oo Uy

Ac?*function u=u (X;a) (shown in equation (2)) is called a complete integral in U x Aprovided

(i) u(x;a) solves the PDE(1) for eacha e A

(i) rank(Dau, D)%au): n (xeU,aeAh)

Note: Condition (ii) ensuresu (X; a)”depends on all the n independent parameters d;, ..., &, .
Example 1: The eikonal equation,
|Du|=1 (4

Introduced by Hamilton in 1827 is an approximation to the equations which govern the behaviour of light
travelling through varying materials. A solution, depending on parameters|a| =1b e R is

u(x;a,b)=ax+b .. (5
Example 2: The Clairaut’s equation is the PDE
x.Du+ f (Du)=u ... (6)
where f:R" > Ris given.
A complete integral is
u(x;a)=ax+f(a) (xeU) .. (D

foraeR".
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Example 3: The Hamilton-Jacobi Equation

u,+H (Du)=0 .. (8)
with H :R" — Ris given andU =U(X,t):R" xR — R .A solution depending on parametersa € R",b € Ris

u(xt;a,b)=asx—tH(a)+b .. (9)

where t>0.

Remark: For simplicity, in most of what follows, we restrict ton =2. We call the two variables X, Y.
Thus, we reduce to the case

F(u,.u,,u,xy)=0 . (7)
In this case, the solutionu =u(X, y)is a surface in R®. The normal direction to the surface at each point is
given by the vector (u,,u,,~1).
5.2 Envelope

Definition: Letu=u (x;a) be ac*function of x and U and A are open subsets of R". Consider the vector

equation
Du(xa)=0 (xeU,aeA) (D
Suppose that we can solve (1) for the parameterdas aC* function of X,
a=¢(x) - (2)
Thus
Du(x4(x))=0 (xeU) ..(3)
We can call
v(x)=u(x4(x)) (xeU) (%)

is the envelope of the function {u (; a)}

acA

Remarks: We can build new solution of nonlinear first order PDE by forming envelope and such types
of solutions are called singular integral of the given PDE.

Theorem: Construction of new solutions
Suppose for eacha € A as above thatu=U ( a) solves the partial differential equation
F(Du,u,x)=0 ..(5)

Assume further that the envelopeV, defined (3) and (4) above, exists and is aC*function. ThenVsolves (5)
as well.
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Proof: We have V(X) :u(x;¢(x))

for i=1..,n.

Hence for each x e U,
F(Dv(x),v(x),x)= F(Du(x;¢(x)),u(x;¢(x)),x):0
Note: The geometric idea is that for eachxeU , the graph of V is tangent to the graph ofu(.;a) for
a=¢(x). ThusDv=Du(.;a) at X, fora=¢(x).
Example 4: Consider the PDE
u*(1+[Duf’) =1 .. (6)

The complete integral is
b

u(x,a):i(1—|x—a|2) (|x—a|<1)
We find that
Dy
N\h
(1—|x—a| )

provided a=¢(X)=X.

Thusv = +1are singular integrals of (6).
5.3 Characteristics

Theorem: Structure of Characteristics PDE
Let U C?(U) solves the non-linear PDE

F(Du,u,x)=0 inU

Assume X(.) = (X, X%,...,X") solves the ODE x = D,F(p(s), 2(3). X(5)).

where
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p(9)=Du(x()). 2(s)=u(x())
Then p(.) solves the ODE.

p=-D_F(p(s).2(5).x())-DF (p(s). 2(5). () p(S) (3)

and z(s) solves the ODE z(s) = D,F (@ z(s),@).@ for those s such that X(s) U
Proof: Consider nonlinear first order PDE
F(Du,u,x)=0in U .. (D)
subject now to the boundary condition
u=g onl o ()
where ' < oU and g : " — Rare given.

We suppose that F and g are smooth functions. Now we derive the method of characteristics which solves
(1) and (2) by converting PDE into appropriates system of ODE. Initially, we would like to calculate u(x)
by finding some curve lying within U, connecting x with a point X, € I" and along which we can calculate
u. Since equation (2) saysu = g on I' . So we know the value of u at one end x, and we hope then to able
to find the value of u all along the curve, and also at the particular point x.

Let us suppose the curve is described parametrically by the function
x(s)=(x"(s),....x"(s)) , the parameter s lying in some subinterval of R

Assuming Uis ac?solution of (1), we define

z(s)=u(x(s)) .. 3)
Set
p(s)= Du()_<(s)) (4
ie p(s)=(P*(s). P"(s))  where
p'(s)=u, (x(s)) (i=L..n). .5

Soz(.) gives the values ofUalong the curve and B() records the values of the gradient Du .

First we differentiate (5)

§(5)= 20, (X(5))¥' (9 )
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where = —
ds
We can also differentiate the PDE (1) with respect to X

 oF () % ok oF ~
JZ_l:a—loj(Du,u,X)uxjxi(x(s))x (s)+E(Du,u,x)uxi+&(Du,u,x)_0 (D

We set
% oF — - ,
X (s) =a—p(p(8),2(8),><(8)) (j=12,..,n) .(8)

Assuming (8) holds, we evaluate (7) at X = >_<(s) and using equations (3) and (4), we have the identity

oF OF (— .

i%(_p(sy 2(5).X(s))u,, (>_<(S))+E(B(s), 2(s).x(s)) p (S)+a_x( p(s).2(s).X(s))=0Put this

e;pression and (8) into (6)
i oF (— = oF (— - i
p (s)z—&(p(s),z(s),x(s))—g(p(s),z(s),x(s))p (s) ...(9)

Lastly, we differentiate (3)
, 5 ou (= i Lo, \OF (= -
z(s)=;a—;(x(s))x‘(s)=21:p’(s)a—p(p(s),z(s),x(s)) ...(10)

the second equality holding by (5) and (8). We summarize by rewriting equation (8)-(10) in vector notation

p(s) =-D,F (P(s), z(s), X(s) )~ D,F (P(s), 2(s), X(5) )- P(s)

2(s) = D,F (P(s), 2(s), X(s)).P(s) ..(11)

x(s) = D,F (P(s), z(s), X(s))

This system of 2n+1 first order ODE comprises the characteristic equation of the nonlinear first order
PDE (1).

The functions p(.)=(p*(.),-.. p" (1)), 2(-), X(-)=(x"(.)..... X" (.)) are called the characteristics.

Remark: The characteristics ODE are truly remarkable in that they form a closed system of equations for
x(.),z(.)=u (?((.))and p(.)=Du (>_<(,)) , whenever u is a smooth solution of the general nonlinear PDE(1).

We can use X (s) in place of X(s).

Now we discuss some special cases for which the structure of characteristics equations is especially
simple.
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(a) Article

Let us consider the PDE of the form F (Du,u, x) =0to be linear and homogeneous and thus has the form
F (Du,u,x)=b(x).Du(x)+c(x)u(x)=0 (xeU) e
Equation (1) can be written as
F(p.z,x)=b(x).p+c(x)z

So characteristics equations are

X(s)=D,F =b(x)

- b(;((s)) (From last expression)
and 2(s)= DpF.B - b(}(s)),ﬁ(s) (From last expression)
= —c(>_<(s)) 2(s)

Thus

x(s)=b(x(s))
2(5):—(:()_((5))2(5)

comprise the characteristics equations for the linear first order PDE(1).

(2

Example 5: Solve two dimensional system

Xlux2 - XZUX1 =uinU (3)
u=g onI

where U is the quadrant{x, >0,x, >0}andT"={x >0,x, =0} coU
Solution: Comparing (3) with (1), we have

F(Du,u,x)=xu, —xu, —u=0

= (=X, xl).(uxl,UXZ)—u =0
We get,

b(X(5))=(%. %), c(x(s))=-1
Now b(X(s)) = (B (x).b, (x))
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:(_X21X1)
=D (x)=-%,b,(x)=x,

The characteristics equations are

and 2(
(

)
Therefore 2(s)=z(s)
(

(
Now %(8)=-%(s)=-x(s)
=% (s)+x,(s)=0

Auxiliary equation is D* +1=0

= D=+
= X,(S)=c,coss+c,sins
So X,(s)=c,coss+c,sins
Integrate (5) w.r.t.s
X,(s)=c,sins—c,coss+c,
From (5), we have
% (s)=—csins+c,coss
Comparing (4) and (8)
—X, (s)=—¢,sins+c, coss
= X,(s)=c,sins—c,coss
From (7) and (9)

c,=0

(4

.. (5
...(6)

()

..(8)

...(9)
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Therefore X,(s)=c,sins—c, coss ...(10)
Taking s =0 in (10)
X, (0)=—c,
=¢,=0 [F:{(xl(s),xz(s))|x2:0at 3:0}}
Therefore X (s)=c,coss ..(11)
and X,(s)=c,sins .. (12)
Put s=0 in (11)
x(0)=c,
Letx’ =x (0)=c,
Put value of ¢, = X° in (11) and (12)
x,(s)=x"coss
X,(s)=x"sins
Also we have
2(s)=2(s)
dz
DE_ Z(S)
Integrating w.r.t.s
logz =s+logz°
z
= IogZ—O: S
=1z7=17%
=12(0)=2"
Therefore z(s)=1z(0)e’
Also u=gon T
=u(x(s).0)=g(x(s)) .(13)

We know that U
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S0 u(x() %, (5))=2(s)
=u(x(0),0)=z(0)=2° ..(14)

Put (14) in (13)

Thus we have

X (s)=c,coss=x’coss
and X,(s)=c,sins=x"sins
and z(s)=g(x’)e’
Now select s>0 and x° > 0, so that

(%, %) =(%(s),x, (s))=(x"coss,x’sins)
= x =x"cossand X, =x’sins

Consider,
X7 +x} = X" (sin® s+cos’ s) = x"
= X +% =X°
We have
tans =2
X,
=s=tan" (ﬁJ
X,
Thus

which is the required solution.
(b) Article

A quasilinear PDE is of the form

F(Du,u,x)= b(x,u(x)).Du(x)+c(x,u(x)) =0 .. (D
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Equation (1) can be written as
F(p.z.x)=b(x,z).p+c(x,2)
Now Dszb(x,z)
Thus the characteristic equations becomes
X(s)=D,F =b(X (s),z(s))

and 2(s)=D,F.p

p

Consequently

{X(s)=b(x(5),2(s)) @)

2(s)=-c(X(s),z(s))
are the characteristic equations for the quasilinear first order PDE (1).

Example 6: Consider a boundary-value problem for a semilinear PDE

u, +u, =u®inU
..(3)

u=g onl
where U is half-space {X, >0}and I'={x,=0}=0U.
Solution: Comparing (3) with (1), we have

b= (1,1) and ¢ =—z?

Then (2) becomes

Consequently
X (s)=x"+s,%x*(s)=s

z(s)= 2 Q(XO)

1-s2° 1-sg (x°)
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where X’ € R,5 >0, provided the denominator is not zero.

Fix a point(X, X, ) €U . We selects > 0and x° € R, 50 that(x,,X,) = (x'(s),x* (s)) =(x° +5,5)

e X =X —X,S=X,.

Then

U(Xl’xz):U(Xl(S),Xz(s)):Z(S):M

_9(x—%)
1_X29(X1_X2

),1—ng(x1—x2)¢0

which is the required solution.
(c) In this case, we will discuss about characteristics equation of fully nonlinear PDE.

Example 7: Consider the fully nonlinear problem

u,u, =uinU
u=x; onl

()

whereU ={x, >0}, I'={x =0} =0U
Here F (p,z,X) = p,p,—Z . Then the characteristic equations becomes

pl — pl pZ — pZ

2=2p'p’

)-(l — p2 )-(2 — pl

We integrate these equations and we find
X'(s)=p; (e ~1),x*(s)=x"+p; (e* ~1)
2(s)=12"+p;p3(e* -1)

0

p'(s)=pie’, p*(s) = pye’

Sinceu=%, on I, p? =u, (0,x°)=2x".

0
. . X
Therefore, the PDE u.u, =u itself implies p? p) = z° =(x°)2, and so plO = ? .

1

Thus we have,
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0

X' (s)=2x"(e° -1),x*(s) = X?(es +1)

0
Fix a point(X,,X,) €U . Choose s and x° so that (x, %,) = (X(s), X*(s)) = (2x°(e° —1),)‘?(es +1))

and so
u(x,%)=u (xl(s),x2 (s)) =2(s)= (x")2 e
_ (x1+4x2)2
16
Exercise:

1. Find the characteristics of the following equations:
(@) XU, +XU, =2u, u(x,1)=g(x)

(b) u +b.Du=f in R"x(0,0),beR", f=f(xt)
2. Prove that the characteristics for the Hamiltonian-Jacobi equation
u,+H(Du,x)=0

are

p(s)=-D,H(p(s).x(s))
2(s)=D,H (B(S)j(s)).ﬁ(s)- H (B(S)j(s))
X(s)=D,H (P(s).X(s))

5.4 Hamilton-Jacobi Equation
The initial-value problem for the Hamilton-Jacobi equation is

u,+H(Du)=0in R"x(0,0)
u=g  onR"x{t=0}
Hereu:R"x[0,00) > Ris the unknown,u=u(xt), andDu=Du=(u,,...u, ). The Hamiltonian

H :R" — Rand the initial function g : R" > R are given.
Note: Two characteristic equations associated with the Hamilton-Jacobi PDE

u,+H(Du,x)=0
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are Hamilton’s ODE

x=D,H (P(s).X(5))

p=-D,H (). X))

which arise in the classical calculus of variations and in mechanics.
5.4.1 Derivation of Hamilton’s ODE from a Variational Principle (Calculus of Variation)
Article: Suppose that L: R" xR" — R is a given smooth function, which is called Lagrangian.

We write

L=L(0X)=L(0hyer Oy Xy X,)

and

Where §,X€R"

For any two fix points X, Y € R"and a timet > 0and we introduce the action functional
t
H[W(.)]=[L(W(s) W(s))ds )
0
where the functions w(.) = (wl(.),w2 ()wn ()) belonging to the admissible class

A={w(.)eC?([0,t];R")

w(0) =y, w(t)=x}
Thus, aczcurvev_\/(.)belongs to Alif it starts at the point Y at time 0 and reaches the point Xat time t.

According to the calculus of variations, we shall find a parametric curve X() € Asuch that
1[x()]= min| [w(.)] .3

i.e., we are seeking a function X (.)which minimizes the functional I [.]among all admissible candidates

V_V(.)EA.
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5.4.2 Theorem: Euler-Lagrange Equations

Prove that any minimizer Y() € Aofl [0] solves the system of Euler-Lagrange equations

“) —%(DqL(X*(S),Y(S)))+ D,L(X(s)) (0<s<t)
Proof: Consider a smooth functionV : [0,t] — R"satisfying
v(0)=v(t)=0 .. (3
andv =(v*,...,v")
Force R, we define
W(.)=X()+cv(.) ... (6)

Then, W(.) belongs to the admissible class A and X (.) being the minimizer of the action functional and so

%)= [w()]

Therefore the real-valued function

i'(0)=0 .. (D
providedi'(0) exists.
Next we shall compute this derivative explicitly and we get
i(c)= [L(%(s)+ 0 (s), R (5) +c7(5))ds
0
And differentiating above equation w.r.t. ¢, we obtain
i'(c):jzn: L, (X+CV,Xx+CV V' + L, (X+CV,x+CV )v'ds
=

Setc = 0and using (7), we have

L, (%,X)V +L, (X,X)vids (8)

i=1

Ozi'(O):

[ S——

Now we integrate (8) by parts in the first term inside the integral and using (5), we have
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d L (5N <L (x.%)Ivid
_E( qi(x,x))+ . (X.%) |vids

This identity is valid for all smooth functionsv = (vl,...,vn ) satisfying (5) and so

_d
ds

(L (%,%))+ L, (x,x)=0

foro<s<t,i=1..,n

Remark: We see that any minimizeri(.) e Aofl [] solves the Euler-Lagrange system of ODE. It is also
possible that a curve X(.)eAmay solve the Euler-Lagrange equations without necessarily being a

minimizer, in this case X (.)is a critical point of I [.]. So, we can conclude that every minimizer is a critical

point but a critical point need not be a minimizer.

5.4.3 Hamilton’s ODE:

Suppose c?function X() is a critical point of the action functional and solves the Euler-Lagrange equations.
Set

1) p(s)=D,L(x(s).x(s))  (0<s<t)
where P(.)is called the generalized momentum corresponding to the position X(.) and velocity X (.).
Now we make important hypothesis:
(2) Hypothesis: Suppose for all X, P € R" that the equation
p=D,L(a.x)
can be uniquely solved for g as a smooth functionof pandx, q =Qq= ( P, x)

Definition: The Hamiltonian H associated with the Lagrangian L is
H(p.x)=pa(p.x)-L(q(p.x).x) (p.xeR")
where the functiond(.,.)is defined implicitly by (2).
Example: The Hamiltonian corresponding to the Lagrangian L(q, x) :%m|q|2 —g(x)is
H(pox)= 5ol +4(x)
2m

The Hamiltonian is thus the total energy and the Lagrangian is the difference between the kinetic and
potential energy.
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5.4.4 Theorem: Derivative of Hamilton’s ODE

The functions Y(.)and ﬁ() satisfy Hamilton’s equations

(=D H(BOXE)
; [ o) O
Furthermore, the mapping s > H ((s),X(s))is constant.
Proof: From (1) and (2), we have
X(s)=a(p(s)X(s))
Let us write (.)=(g"(),-q"())
We compute fori=1,...,n
oH o og¢ oL o oL
S (PR=Xp g (pX)- (0 )51 (Pr)= 52 (@)
= —%(q, X) (using (2))
and B (p 0= (P22 p 2 (P~ (@1) 2 (9
=q'(p,x) (again using (2))
Thus
o (PO)X(6))=0'(p(5).(5)=x' (3
e 2 (5(6).4(5) =2 (a((5).4(5) K(6)) =~ = 4(5)x(5)
8 2 (a9 x()
==p'(s)
Hence
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" oH (—6H ). oH (oH
_y RO HpR g
i1 Op; ( X j OXi (api]

which shows that the mapping S — H (p(s), X(S)) is constant.

5.5 Legendre transform:

Assume that the Lagrangian L : R" — R satisfies following conditions

(i)  the mappingq > L(q)is convex (D
iy im =@ Q)
d=>=|q|

whose convexity of the mapping in equation (2) implies L is continuous.

Note: In equation (2), we simplify the Lagrangian by dropping the x-dependence in the Hamiltonian so
that afterwards H=H(p).

Definition: The Legendre transform of L is

(3) L*(p)=sup{pa-L(a)} (peR")

qeR"
Remark: Hamiltonian H is the Legendre transform of L, and vice versa:
L=H*H=L* )
We say H and L are dual convex functions.
Theorem: Convex duality of Hamiltonian and Lagrangian
Assume L satisfies (1),(2) and define H by (3),(4)

()Then
the mapping p — H (p)is convex
And
Lm% -
(i)Furthermore
L—H* . (5)

Proof: For each fixedq, the function p— p.q—L(q)is linear, and the mapping

p>H(p)=L*(p)=sup{p.g—L(q)} isconvex.

qeR"

Indeed, if 0<7<1,p.peR",
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H(rp+(1-7) p)=sup{(rp+(1~7) p) a- L(a)}

<rsup{pq-L(a)}+(1-7)sup{pa-L(a)}

=7H(p)+(1-7)H (D)

Fixany A>0,p=0. Then

H(p)=sup{pa-L(q)|

geR"

) [

> A|p|—max L

B(0,4)

Therefore, Iim‘i‘nf H|(;O) >/ forall A>0
P Ip

From (4), we have

H(p)+L(a)=pg Vp,geR"
and
L(a)zsup{pg—H(p)j=H*(a)
peR"
On the other hand

150 =sfoa-s0{pr L0}

peR"

=sup inf { p.(q-r)+ L(I‘)}

peR" rer"

since q > L(q)is convex.
Let there exists s € R" such that

L(r)>L(q)+s.(r-q) (reRr")
Taking p=sin (6)

H*(q)zinf {s.(q—r)+L(r)j=L(a)

.. (6)
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5.6 Hopf-Lax Formula

Consider the initial-value problem for the Hamilton-Jacobi equation

{ut +H(Du)=0in R"x(0,0)

u=gon R"x{t=0} - @)

We know that the calculus of variations problem with Lagrangian leads to Hamilton’s ODE for the
associated Hamilton H. Hence these ODE are also the characteristic equations of the Hamilton-Jacobi
PDE, we infer there is probably a direct connection between this PDE and the calculus of variations.

Theorem: If x e R" andt > 0, then the solutionu =u(x,t) of the minimization problem

u(x,t)= mf{_:[L W(s))ds+g(y)[w(0)=y,wW(t)= x} .. ()

u(x,t):min{tL(¥j+g(y)} ...03)

where, the infimum is taken over all C* functions. The expression on the right hand side of (3) called
Hopf-Lax formula.

Proof: Fix any Y € R" and define
w(s)=y+2(x-y)  (0ss<Y)

Then w(0)=y and w(t)=y

The expression (2) of u implies

u(xt)< j; L(W(s))ds+g(y) :tL(%)Jr g(y)
and therefore

- -y

1) <inf JtL
u(xt) ;QRH{ ( t ] g(y)}
IfW(.)is any C*function satisfying W(t) =X, then we have

t t
L[%!W(s) dsJ < :t_L-([ L(W(s))ds (by Jensen’s inequality)

Thus if we write y =w(0), we find
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and consequently

Hence

u(xt)= ;nrf {tL[%j-F g (y)}

Lemma 1: (A functional identity)

Foreachx e R"and0<s<t, we have

u(x,t)=mip{(t—s)L(Pj+u(y,s)} (D)

yeR —-S

In other words, to computeU(.,t), we can calculate u at time s and then use U (., s) as the initial condition

on the remaining time interval [s,t].

Proof: Fix Y€ R",0< s <tand choose z € R" so that

u(y,s)=s (y; j+g( ) .. ()

Now since L is convex andu =(1——J(X_ yj+§ y- , we have
t t t-s t
t t t-s t S

Thus
t—s S

u(x,t)étL(thj+g( )<t s)L(X yj+sL[y_ j+g(z)

t-s

:(t—s)L[ yj+u(y 5)

By (2). This inequality is true for each Y € R". Therefore, since y - u(y,s)is continuous, we have

yeR -5

u(x,t)Smirnl{(t—s)L(t y]+u(y s)} ...(3)



Nonlinear Partial Differential Equations 151

Now choose w such that

u(x,t)th(X;—W)ﬂ;(W) @)

S S _ _ _
andsety::—X+(1——jW.ThenX y_X-W_Yy-w
t t t—s t S

Consequently

By (4). Hence

min{(t—s)L(ﬂ)+u(y,s)}£u(x,t) ..(5)

yeR" t—s
Lemma 2: (Lipschitz continuity)

The function u is Lipschitz continuous in R" x[0,e0) ,and u=g on R"x{t=0}.
Proof: Fix t>0,X,X€ R". Choose Y € R" such that
X_
tL(Tijrg(y):u(X,t) ....(6)

Then

Hence
u(%,t)-u(xt)<Lip(g)[R—x|
and, interchanging the roles offand X, we find

u(R,t)—u(x,t)| < Lip(g)|x—%] (D)
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Now select x € R", t>0. Choosing Y = X in (*), we discover
u(x,t)<tL(0)+g(x) ..(8)

Furthermore,

u(xt)= min{tL(%jJrg(y)}

yeR"

>g(x)+ min{—Lip(g)IX— y|+t|_(¥)}

yeR"

=g(x)-tmax{Lip(g)|z|-L(2)} (Z:¥j

=g(x)-t max max{w.z-L(z)}

WEB(O, Lip(g)) zeR"

= g(x)- H
9(x)-t,mex

This inequality and (8) imply
u(x,t)—g(x)|<Ct

For
C:=max (‘L(O)‘,B(m%))w |) .. 9)

Finally select X€ R",0<f<t. Then Lip(u(.,t))ﬁ Lip(g) by (7) above. Consequently Lemma 1 and
calculations like those employed in step 2 above imply

u(x,t)—u(x.f) <Clt—f|
For the constant C defined by (9).

Theorem: Solving the Hamilton-Jacobi equation

Suppose X€ R",t >0 and u defined by the Hopf-Lax formula

u(xt)= min{tL(%jJrg(y)}

yeR"
is differentiable at a point (X,t) e R"x(0,%0). Then

U, (x,t)+H(Du(xt))=0.
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Proof: Fixq € R",h>0. Oowing to Lemma 1,

u(x+hq,t+h):min{hL(WJ+u(y,t)}

yeR"
<hL(q)+u(xt).
Hence
u(x+hg,t+h)-u(xt
(eratshuls) )
Let h — 0", to compute
q.Du(xt)+u, (x,t)<L(q).
This inequality is valid for allq € R", and so
u, (x,t)+H (Du(xt))=u,(x,t)+max{q.Du(x,t)-L(q)} <0 ...(10)
qeR"
The first equality holds sinceH = L.
Now choose z such thatU(X,t):“-(EjJrg(z)- Fix h>0 and setS=t—h,y=%x+(1—%jz_

Then X=%2_Y~2 and thus
t S

That is,

Let h — 0*to compute
%.Du(x,t)wt (x,t)> L(%j

Consequently
u (xt)+H (Du(xt))=u (xt)+ r;rl%Z({q.Du (x,t)—L(q)}

Zut(x,t)+¥.Du(x,t)— L(Ej

>0
This inequality and (10) complete the proof.
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Lemma 3: (Semiconcavity)

Suppose there exists a constant C such that
g(x+z)—Zg(x)+g(x—z)£C|z|2 (11)
for all X,Z € R" . Define u by the Hopf-Lax formula (*). Then
u(x+z,t)-2u(xt)+u(x—zt)<Clz[
forallx,zeR"t>0,

Remark: We say g is semiconcave provided (11) holds. It is easy to check (11) is valid if g is Cc* and

sup ng‘ <oo. Note that g is semiconcave if and only if the mapping x — g (x) + %|x|2 is concave for some
Rn

constant C.
X_
Proof: Choose Y € R" so thatu(X,t) :tL(Tyj+ g(y). Then puttingy +z and Yy — zin the Hopf-Lax

formulas foru(x+2z,t)andu(x—z,t), we find

u(x+z,t)—2u(x,t)+u(x—zt)

s{t%%}rg(w z)}—Z{tL %)Jrg(y)}

J{tL(?jJr g (y—z)_

=9(y+z)-29(y)+9(y-2)
<Cl’,  by(11)

Definition: AcC?convex function H : R" — R is called uniformly convex(with constant@ > 0) if

(12) Y H,, (p)&E 20l forall p,5 € R’
i j=1
We now prove that even if g is not semi-concave, the uniform convexity of H forces u to become semi-
concave for times t>0: it is a kind of mild regularizing effect for the Hopf-Lax solution of the initial- value
problem.
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Lemma 4: (Semi-concavity Again)

Suppose that H is uniformly convex (with constantd) and u is defined by the Hopf-Lax formula. Then

u(x+ z,t)—2u(x,t)+u(x—z,t)§%|z|2

forallx,zeR"t>0,

Proof: We note first using Taylor’s formula that (12) implies

1 0
(p1;p2j<2H(p1)+ H(p,)—glp—pf (13)
Next we claim that for the Lagrangian L, we have estimate
1 1
FL)+ 5@ <t 5% g 19

Forall g;,0, €R". Verification is left as an exercise.

Now choose y so thatu(X,t) = tL( tyj g(y). Then using the same value of y in the Hopf-Lax formulas
foru(x+z,t)andu(x-z,t), we calculate

u(x+z,t)—2u(x,t)+u(x—zt)

s 520

2
<ot ZtZ

<L,
ot
The next-to-last inequality following from (14).

Theorem: Suppose X € R"t>0, and u defined by the Hopf-Lax formula is differentiable at a point
(X,t) eR" X(O,oo)_ Then

ut(x,t)+H(Du(x,t))=O
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Proof: Fix( € R",h>0and using Lemma (1), then we have

u(x+hq,t+h):min{hL(WJ+u(y,t)}

yeR"

<hL(q)+u(xt)

Hence
u(x+hg,t+h)—u(xt
(erat)-uxt) )
Leth — 0", to compute
q.Du(xt)+u, (x,t)<L(q) forallqeR"

and therefore

u (x,t)+H(Du(xt))=u,(x,t)+ r;l%%({q.Du(x,t)— L(g)}<0

The first equality holds sinceH = L*

Now choosez such that

u(x,t):tL[¥j+g(z)

Fix h>0 and set

Then X-z — y-z

and

Leth — 0" to compute
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%,DU(X,t)-l_ut (xt)2 L(¥j

Consequently

U, (x,t)+H (Du(x,t))=u, (x,t)+r¥§§{q.Du(x,t)— L(a)}

> U, (x,t)+¥.Du (x.t)- L(%}
>0

Hence U, (x,t)+H (Du(x,t))=0

5.7 Weak Solutions and Uniqueness

Definition: We say that a Lipschitz Continuous functionu:R"x[0,50) > R is a weak solution of the

initial-value problem

5 {ut+H(Du):0in R" x(0,0)

u=gon R"x{t=0}
provided
@u(x0)=g(x)  (xeR")

(b) U, (x,t)+H (Du(xt))=0for ae(xt)eR"x(0,)
@u(x+zt)-zu(x,t)+u(x—zt)< c(1+%]|z|2

for some constantc > Oand all X,Z€R",t>0 .
Theorem: Uniqueness of Weak Solution

His convex and
Assume H isc?®and satisfies . H(p) N and §:R" >R is Lipschitz continuous. Then there
Q0

e |p|
exists at most one weak solution of the initial-value problem (15).

Proof: Suppose thatUandare two weak solutions of (15) and writew:=u—0 .

Observe now at any point(Y,s)where bothUandu are differentiable and solve our PDE, we have

W (Y,5)=U,(ys)-0(y.s)
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=—H (Du(y,s))+H(Dd(y,s))

:_E%H (rDu(y,s)+(L-r)Di(y.s))dr

1

=—[DH (rDu(y,s)+(1-r)Du(y,s))dr.(Du(y,s)-Da(y,s))

0

=-b(y,s).Dw(y,s)
Consequently

W, +b.Dw=0 ae. ... (16)

Write vi=¢(w)>0, where ¢: R —[0,0) is a smooth function to be selected later. We multiply(16) by

¢ (w)to discover

Vv, +b.Dv=0 a.e. ..(17)

Now choose & > 0and defineU® :=7,*u,0° :=7_*U, where 7, is the standard mollifier in the x and t
variables. Then we have

‘Dug

< Lip(u),|Da*

< Lip(0), .. (18)
and
Du® — Du,Di* - DU ae., ase -0 ...(19)

Furthermore inequality(c) in the definition of weak solution implies

< 1
D%?,D%° <C (1+—) I
S
For an appropriate constant Cand alle >0,Y € R", $>2¢ . Verification is left as an exercise.

Write

1

b, (y.s)= j DH (rDu‘E (y,s)+(1-r)Da° (y,s))dr ... (20)

0

Then (17) becomes
v, +b,.Dv=(b, —b).Dv a.e.
Hence

v, +div(vh, ) =(divb, Jv+(b,—b).Dv ae. .21



Nonlinear Partial Differential Equations 159

Now

divb, —IZH (rDu® +(1-r) Da* )( e H(1-r)0 Xka)dr

o k,I=1

< c(uéj ..(22)

For some constant C, in view of (17) and (19). Here we note that H convex implies D°H >0.
FixX, € R",t, >0, and set
R :=max {|DH (p)||p| < max (Lip(d))} ...(23)
Define also the cone
C={(x1)]0<t<ty,|x—x|<R(t,—t)}

Next write

é(t)= I v,dx—R j vdS
B(%p.R(tyt)) 8B(%.R(tp )

= | —div(vb,)+(divb, )v+(b, ~b).Dvdx

B(%.R(to-t))

R [ s by (21)
0B(%,R(ty—t))

=- _[ v(b,v+R)dS
+ | (divb,)v+(b, —b).Dvdx
B(%R(to-t))

< | (divb,)v+(b, b).Dvdx by (17), (20)

B(%,R(t-t))

_C(1+%Je(t)+ ( I (b, —b).Dvdx

B(%.R(to-1))
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by (22). The last term on the right hand side goes to zero as¢ — 0, for a.e.t, > 0, according to (17), (18)
and the Dominated Convergence Theorem.

Thus

(24) é(t)SC(l+%je(t) fora.e. 0<t<t,

Fix 0< ¢ <r <tand choose the function ¢(z) to equal zero if
|z]< e[ Lip(u)+Lip(d)]
and to be positive otherwise. Sinceu =donR" x{t =0},
v=¢(W)=¢(u-0)=0 at{t=¢}

Thus e(g) =0. Consequently Gronwall’s inequality and (24) imply

Hence
u—d|<ef Lip(u)+Lip(d)] on B(X,R(t,~r))
This inequality is valid for alle >0, and sou=din B(XO,R(tO—r)). Therefore, in particular,

U (%, t)=0(Xgty).



