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CHAPTER-0 

1 (a) Geometric Notations 

(i) Dimensional real Euclidean space 

(ii) Real line 

(iii) 
i

e   Unit vector in the direction  

(iv) A point x in is  

(v) =open upper half-space 

(vi) A point in will be denoted as , where t is time variable. 

(vii) U,V,W denote open subsets of .We write if and is compact 

i.e. V is compactly contained in U. 

(viii) = boundary of U 

U=closure of  

(ix)   

(x) =parabolic boundary of TU    

(xi) = open ball in with centre x and radius r>0 

(xii) =closed ball in with centre x and radius r>0 

(xiii) =volume of unit ball in  

 

=surface area of unit sphere in  

(xiv) If s.t.  and then and  

(b) Notations for functions 

(i) If ,we write where , u is smooth if u is infinitely 

differentiable. 

(ii) If u, v are two functions, we write if u, v agree for all arguments 

means u is equal to v. 

nR n 

1R R 

thi  0,0,0,...1,...0

nR  1 2, ,..., nx x x x

  1 2, ,..., 0n n

n nR x x x x R x   

1nR     1, ,..., ,nx t x x t

nR V U V V U  V

U

U U U 

 0,TU U T 

T T TU U  

   0 , nB x r y R x y r   
nR

   , nB x r y R x y r   
nR

 n  0,1B nR

2

1
2

n

r

n


 
  
 

 n n  0,1B nR

, na b R  1 2, ,..., na a a a  1 2, ,..., nb b b b
1

,
n

i i

i

a b a b




1
2

2

1

n

i

i

a a


 
  
 


:u U R    1 2, ,..., nu x u x x x x U

u v

:u v
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(iii)  The support of a function u is defined as the set of points where the function is not zero and 

denoted by spt u. 

 
(iv)  The sign function is defined by 

 

          

             

(v) If  

 where  

The function  is the ith component of u 

(vi) The symbol denotes the integral of  f over dimensional surface in  

(vii) The symbol denotes the integral of  f over the curve C in   

(viii) The symbol   denotes the volume integral of S over and is an arbitrary point. 

(ix) Averages:   

=average of f over ball  

 

=average of f over surface of ball  

(x) A function is called Lipschitz continuous if 

, for some constant C and all .We denote 

 

(xi) The convolution of functions is denoted by . 

  0u x X f x  

1 0

sgn 0 0

1 0

if x

x if x

if x




 
 

 

 

max ,0

min ,0

u u

u u

u u u





 



 

 

u u u  

: mu U R

       1 ,..., mu x u x u x x U   1 2, ,... mu u u u

iu

fdS


  1n  nR

C

fdl
nR

V

fdx
nV R x V

     , ,

1
n

B x r B x r

fdy fdy
n r

 

 ,B x r

     
1

, ,

1
n

B n r B n r

fds fds
n n r 

 

 

 ,B x r

:u U R

   u x u y C x y   ,x y U

 
   

,

sup
x y U
x y

u x u y
Lip u

x y
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




,f g f g
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(c) Notations for derivatives:   Suppose  

(i)  

   provided that the limit exists. We denote by  

Similarly and    and in this way higher order derivatives can be 

defined. 

(ii) Multi-index Notation 

(a) A vector of the for where each is a non-negative integer is called 

a multi- index of order  

(b) For given multi-index ,define 

    

(c) If i is a non-negative integer 

   

The set of all partial derivatives of order i. 

(d)  

(iii)  

             =Laplacian of u 

             =trace of Hessian Matrix. 

(iv) Let  

      Then we write 

           

         

       The subscript x or y denotes the variable w.r.t. differentiation is being taken  

(d) Function Spaces 

(i) (a)  

(b)  

(c)  

: ,u U R x U 

     
0

i

h
i

u x u x he u x
lt

x h

  




u

x




ixu

2

i jx x

i j

u
u

x x



 

3

i j kx x x

i j k

u
u

x x x



  

  1 2, ,..., n    i

1 2 ... n      



 
 

1...
1

u x
D u x

nx x
n









 

    ,iD u x D u x i  

 

1
2

2
k

k

D u x D u

 

  
  
  


1
i i

n

x x

i

u u


 

   1 2 1 2, . . , ,..., , , ,...,n

n nx y R i e x x x x y y y y  

 
1
,...,

nx x xD u u u

 
1
,...,

ny y yD u u u

   : u is continousC U u U R 

    C U u C u u is uniformly continous on bounded subsets of U 

   :kC U u U R u is k times continuous differentiable 
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(d)  is uniformly continuous unbounded subsets of U for all  

   

(e)  

(ii) means has compact support. 

Similarly, means has compact support. 

(iii) The function is Lebsegue measurable over if  

  

The function is Lebsegue measurable over if  

 

(iv)  

 

(v)  

Similarly,  

(vi) If is a vector, where then   

similarly other operator follow. 

(e) Notation for estimates:  

(i) Big Oh(O)order 

We say 

as provided there exists a constant C such that , for all x 

sufficiently close to . 

(ii) Little Oh(o) order 

We say 

as ,provided  

 ( ) { : |k kC U u C U D u

}k 

   : infC U u U R u is initly differentiable  

 cC U  C U

 k

cC U  kC U

:u U R pL
 pL U

u  

 

1

,1p

p
p

L U

U

u u dx p
 

    
 


:u U R L

 L U
u   

 
sup

L U
U

u ess u 

   :p pL U u U R u is Lebsegue measurableover L 

   :L U u U R u is Lebsegue measurableover L  

   
p pL U L U

Du Du

   

2 2

p pL U L U
D u D u

: mu U R  1 2, ,..., mu u u u  ,kD u D u k  

 f O g 0x x    f x C g x

0x

 f o g 0x x
 

 0

0
x x

f x
lt

g x




Notations 5 

 

2 Inequalities 

(i) Convex Function  

A function  is said to convex function if  

     

 

(ii) Cauchy’s Inequality 

          

(iii) Holder’s Inequality 

Let ; ,      

         

(iv)  Minkowski’s Inequality 

Let , and ,    Then  

(v) Cauchy Schwartz Inequality 

          

3 Calculus 

(a) Boundaries 

Let be open and bounded, k={1,2,…,} 

Definitions: 

(i) The boundary  is  if for each point  there exists r>0 and a  function

such that  

Also, is analytic if is analytic. 

(ii) If is , then along , the outward unit normal at any point is denoted by

. 

(iii) Let then normal derivative of u is denoted by  

(b) Gauss-Green Theorem 

Let be a bounded open subset of and is . and also then 

                                                 

: nf R R

( (1 ) ) ( ) (1 ) ( )f x y f x f y       

for all , and each 0 1.nx y R   

2 2

2 2

a b
ab    ,a b R

1 ,p q 
1 1

1
p q
     ,p qu L u v L u 

   
p quv dx u v

L U L U
U



1 p    , pu v L U      
p p qu v u v

L U L U L U
  

.x y x y  , nx y R

nU R

U kC 0x U kC

1: nR R        0 0

1 1, , ,...,n nU B x r x B x r x x x     

U 

U 1C U 0x U

   0

1,..., nv x v v

 1u C U .
u

v Du
v






U nR U 1C : nu U R  1u C U

i

i

x

U U

u dx uv dS


   1,2,...,i n
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(c) Integration by parts formula 

Let then 

                           

Proof: By Gauss-Green’s Theorem 

              

Or           

Or           

(d) Green’s formula 

Let then 

(i)  

Proof:  

Integrating by parts, taking the second function as unity 

               

                              

Hence proved. 

(ii)  

Proof:  

                                                   (integrating by parts) 

(iii)  

Proof:  

Similarly,  

subtracting, we get the result.  

 1,u v C U

i i

i

x x

U U U

u vdx uv dx uv dS


    

   
i

i

x

U U

uv dx uv dS


 

 
i i

i

x x

U U U

u vdx uv dx uv dS


   

 
i i

i

x x

U U U

u vdx uv dx uv dS


    

 2,u v C U

U U

u
udx dS





 

 

 
i

i
x

x
U

udx u dx  

i

i

x

U U

udx u dS


  

U

u
dS









.
U U U

v
Du Dvdx u vdx udS





   

  

. .
U U U

Du Dvdx u vdx uDv dS


     

U u

v
u vdx u dS





   

 

 
U U

v u
u v v u dx u v dS

 


  
     

  
 

.
U U U

v
u vdx Du Dvdx udS





   

  

.
U U U

u
v udx Du Dvdx udS





   

  
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(e) Conversion of n-dimensional integrals into integral over sphere 

(i) Coarea formula 

Let be Lipschitz continuous and assume that for a.e. ,the level  set

is a smooth and n-1 dimensional  surface in .Suppose also is smooth and summable. 

Then 

 

Cor. Taking  

Let be continuous and summable then 

 

for each point or we can say 

 

for each r>0. 

(f) To construct smooth approximations to given functions 

Def: If is open, given .We define  

Def. Standard Mollifier 

Let such that 

 

The constant c is chosen so that  

Def. We define 

  for every . 

Properties: 

(i) The functions are since are . 

(ii)  

                                   (by definition of n-tuple integral)   

                     =1 

: nu R R r R   nx R u x r 

nR : nf R R

 n u rR

f Du dx fdS dr



 

 
 
 
 

  

  0u x x x 

: nf R R

 00 ,n B x rR

fdx fdS dr





 
 
 
 

  

0

nx R

   0 0, ,B x r B x r

d
fdx fdS

dr


 
  
 
 
 

nU R 0    : ,U x U dist x U    

 nC R 

  2

1
exp 1

: 1

0 1

c if x
x x

if x



  
        




1
nR

dx 

 
1

:
n

x
x 

 

 
  

 
0 

 C  x C

1

n n

n

R R

x
dx dx 

 

 
  

 
 

 
nR

x dx 
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(g) Mollification of a function 

If is locally integrable 

We define the mollification of f 

in  

                           (by definition) 

Properties: 

(i)  

(ii) almost everywhere as  

(iii) If then uniformly on compact subset of almost everywhere. 

Function Analysis Concepts 

(i) space: Assume to be a open subset of and .If is measurable, we 

define 

 

 Transformation from Ball to unit Ball  

Let be a ball with centre x and radius r and be an arbitrary point of and z be an 

arbitrary point of then relation between y and z is y=x+rz. 

:f U R

:f f

  U 

   
U

x y f y dy     
 0,B

y f x y dy



 

 f C U





f f  0 

 f C U f f  U

pL U nR 1 p   :f U R

 

1

1
:

sup

p

p
p

UL U

U

f dx if p
f

ess f if p

  
     

   
  
  



 ,B x r  0,1B

 ,B x r  0,1B  ,B x r

 0,1B



 

  

CHAPTER-1 
HEAT, WAVE AND LAPLACE EQUATIONS 

Structure 

1.1 Introduction 

1.2 Method of separation of variables to solve B.V.P. associated with one-dimensional Heat equation 

1.3 Steady state temperature in a rectangular plate, Circular disc and semi-infinite plate 

1.4 Solution of Heat equation in semi-infinite and infinite regions 

1.5 Solution of three dimensional Laplace, Heat and Wave equations in Cartesian, Cylindrical and 

Spherical coordinates. 

1.6 Method of separation of variables to solve B.V.P. associated with motion of a vibrating string 

1.7 Solution of wave equation for semi-infinite and infinite strings 

1.1 Introduction 

In this section, the temperature distribution is studied in several cases. For finding the temperature 

distribution we require to solve the Heat equation with different Boundary Value Problem (B.V.P.), 

whereas to find the steady state temperature distribution we require to attempt a solution of Laplace 

equation and to obtain motion of vibrating string we find a solution of Wave equation. 

1.1.1 Objective 

The objective of these content is to provide some important results to the reader like: 

(i) Temperature distribution in a bar with ends at zero temperature, insulated ends, radiating ends 

and ends at different temperature.  

(ii) Steady state Temperature distribution in a finite, semi-infinite and infinite plate 

(iii) Heat conduction in semi-infinite and infinite bar 

(iv) Solution of Heat, Laplace and Wave equation in various cases 

1.2. Method of Separation of Variables to solve B.V.P. associated with One Dimensional Heat 

Equation 

A parabolic equation of the type 

2

2

1
                             ---(1)

u u

x k t

 


 
 

k being a dissasivity (constant) and  ,u x t  being temperature at a point  ,x t of a solid at time t is known 

as Heat Equation in one dimension. 



10 Partial Differential Equations 

We now proceed to discuss the method of separation of variables to solve B.V.P., with boundary 

conditions: 

     

       
0

                          0, 0 and , 0                      ... 2

and

                          ,0  and  =      ... 3
t

u t u l t

u
u x f x x

t




 

 
   

 

Suppose the solution of (1) is 

          ,             ... 4u x t X x T t  

where X(x) is a function of x only and T(t) is a function of t only. 

Therefore, we have 

 

   

 

2 2

2 2

                             =

                                             ... 5

and

                           

u dX
T t

x dx

u d X
T t

x dx

u dT
X x

t dt















 

Inserting (5) into (1), we obtain 

      
2

2

1d X dT
T t X x

dx k dt
  

Dividing both sides by u(x,t)=X(x)T(t),we have 

   
2

2

1 1
            ... 6

d X dT

X dx kT dt
  

Now, L.H.S. of (6) is independent of t and R.H.S. is independent of x, either side of (6) can be equated to 

some constant of separation. If constant of separation is
2p , then 

   

 

2
2 2

2

2
2

2

2

1 1
       and  

or 0           ... 7

0           ... 8

d X dT
p p

X dx kT dt

d X
p X

dx

dT
and p kT

dt

 

 

 

 

These equations have the solutions 

      
2

1 2  and T       ... 9px px kp tX x c e c e t Ae    

In view of (2), (4) implies 

      0, 0  X 0 0   u t T t    
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Here, either X(0)=0 or T(t)=0. If T(t) is assumed to be zero identically then u(x,t)=X(x)T(t) is zero 

identically, that is the temperature function is zero identically, which is of no interest. Thus, we take 

  X(0)=0 

Similarly,        , 0 X 0 X 0u l t l T t l      

Thus, we have 

       X 0 =X 0          ... 10l   

Now, applying (10) on (9), we get 

  1 2 1 20 and c 0pl plc c e c e     

This system has a trivial solution 

  1 2 0c c   

and so X(x)=0, then the temperature function becomes zero which is not being assumed. 

   

     

2

2

2

1 2

Now, let 0,  then 7  and 8  implies

0 and 0

 and T       ... 11

p

d X dT

dx dt

X x c x c t c



 

   

 

Now, applying (10) on (11), we obtain: 

   
 

1 2 0

0

c c

X x

 

 
 

Again, the temperature function becomes zero and is of no interest. 

So, assume that the constant of separation is -
2p , so that 

  
 

 

2
2

2

2

0         ... 12

0           ... 13

d X
p X

dx

dT
kp T

dt

 

 

 

Solution of (12) is 

   1 2cos sin           ... 14X x c px c px   

In view of (10), (14) implies 

 

 

1

2

0 0 and

X sin 0

 for n 0, n being an integer.

X c

l c pl

pl n

n
p

l





 

 

  

 

 

For n0, we have infinite many solutions 
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   sin  ; n =1,2,. ..                   ... 15n n

n x
X x a

l


  

Now, for  , 13
n

p
l


  gives 

2

2 2

2

0

 0,  where n n

dT n
k T

dt l

dT kn
or T

dt l




 

 
  

 

  

 

Its general solution is 

                ... 16nt

nT t c e


  

Combining (15) and (16), we have 

   , sin           ... 17nt

n n n

n x
u x t c e a

l

 
  

where n =1,2,… 

Now, for the general solution, we have  

   
1

, sin              ... 18

  b

nt

n

n

n n n

n x
u x t b e

l

where a c

 








  

giving 

     

   

1

10 0

1

,0 sin             ... 19

sin .

                  sin              ... 20

n

n

n

t

n n

nt t

n n

n

n x
u x b f x

l

u n x
and b e

t l

n x
b x

l









 








 





 

     
        

  







 

From (19) and (20), the constant nb   can be determined easily and thus, (18) represents the solution of 

Heat equation. 

1.2.1 Ends of the Bar Kept at Temperature Zero 

Suppose we want the temperature distribution u(x,t) in a thin, homogeneous bar of length L, given that 

the initial temperature in the bar at time zero in the section at perpendicular to the x-axis is specified by 

u(x,0)=f(x). The ends of the bar are maintained at temperature zero for all time. The boundary value 

problem modeling this temperature distribution is 
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   

       

       

2
2

2
  0 , 0            ... 1

0, , 0    0              ... 2

,0      0             ... 3

u u
a x L t

t x

u t u L t t

u x f x x L

 
   

 

  

  

 

Put        ,              ... 4u x t X x T t   

into the equation (1) to get 

   2' ''                 ... 5XT a X T  

where primes denote differentiation w.r.t. the variable of the function. 

Then,    
 

 

 

 
 2

'' '
             ... 6

X x T t

X x a T t
  

The R.H.S. of this equation is a function of t only and L.H.S. a function of x only and these variables are 

independent. We could, e.g. choose any t, we like, thereby fixing the right side of the equation at a constant 

value. The left side would then have to equal this constant for all x. We therefore, conclude that 
''X

X
is 

constant. But then 
2

'T

a T
 must equal the same constant, which we will designate  (The negative sign is 

a convention; we would eventually get the same solution if we used ). The constant  is called the 

separation constant. 

Thus, we have 

2

'' 'X T

X a T
    

giving us two ordinary differential equations 

2

" 0

' 0

X X

T a T





 

 
 

Now consider the boundary conditions. First 

     

   

0, 0 0

0 0 or T 0

u t X T t

X t

 

  
 

If  T 0t  for all t, then the temperature in the bar is always zero. This is indeed the solution if f(x)=0. 

Otherwise, we must assume that T(t) is non-zero for some t and conclude that 

     (0) 0X   

Similarly,               
     

 

, 0

0

u L t X L T t

X L

 

 
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We now have the following problems for X and T 

     
2

'' 0

0 0

and T'+ a 0

X X

X X L

T





 

 



 

We will solve for  X x  first because we have the most information about X. The problem is a regular 

Strum-Liouville Problem on [0,L]. A value for  for which the problem has a non-trivial solution is called 

an eigen value of this problem. For such a  , any non-trivial solution for X is called an eigen function. 

Case 1:  =0 

Then, " 0,X  so   ,X x cx d  Now  0 0,X d  so   .X x cx  But then   0  0X L cL c     

Thus, there is only the trivial solution for this case. We conclude that 0 is not an eigen value of problem. 

Case 2: 0   

Write 
2 ,k   with k >0. Then, equation for X(x) is 

2'' 0X k X   

with general solution 

   kx kxX x ce de   

Now,  0 0X c d c d       

Therefore,    kx kx kx kxX x ce ce c e e      

Next,     0kL kLX L c e e    

Here, 0,kL kLe e  because kL>0, so c=0. Therefore, there are no nontrivial solutions of the problems if 

0  , and this problem has no negative eigen value. 

Case 3: 0   

Write 2k  , with k>0. The general solution of  

2'' 0X k X   

is   cos sinX x c kx d kx   

Now,  0 0X c  , so   sinX x d kx . 

Therefore,   sin 0X L d kL   

To have a non-trivial solution, we must be able to choose 0d  . 
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This require that sin 0,kL  which occurs if kL is a positive integer multiple of  ,     

say kL n . 

Thus, choose 
n

k
L


 , for n=1,2,… 

For each such n, we can choose 

  sinn n

n x
X x d

L

 
  

 
 

This is a eigen function of the given problem corresponding to the eigen value 
2 2

2

2

n
k

L


    

Now, return to the problem for T with 
2 2

2

n

L


  , the differential equation is 

2 2 2

2
' 0

n a T
T

L


   

with general solution 

 

2 2 2

2

n a t

L
n nT t a e



  

For each positive integer n, we can get 

 

2 2 2

2

, sin ,  where c

n a t

L
n n n n n

n x
u x t c e a d

L





 

  
 

 

This function satisfies the heat equation and the boundary conditions    0, , 0 on t 0u t u L t   To 

satisfy the initial condition for a given n, however, we need  

   ,0 sinn n

n x
u x c f x

L

 
  

 
 

And this is possible only if  f x  is a constant multiple of this sine function. Usually, to satisfy the initial 

condition we must attempt a superposition of all the 'nu s : 

 

2 2 2

2

1

, sin

n a t

L
n

n

n x
u x t c e

L








 
  

 
  

The initial condition now requires that 

   
1

,0 sinn

n

n x
u x f x c

L





 
   

 
  
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Which we recognize as the Fourier sine expansion of  f x  on [0.L]. Therefore, choose the 'nc s as the 

Fourier sine coefficients of  f x  on [0,L]: 

 
0

2
sin

L

n

n x
c f d

L L


 

 
  

 
  

With certain conditions on  f x  this Fourier sine series converges to  f x  for 0 x L  and the formal 

solution of the boundary value problem is  

   

2 2 2

2

1 0

2
, sin sin

n a tL

L

n

n n x
u x t f d e

L L L


 

 




    
     

    
   

Example: As a special example, suppose the bar is kept at constant temperature A, except at its ends, 

which are kept at temperature zero. Then, 

        0f x A x L    

and 

  

 

  
0

2 2
sin 1 cos   

2
   = 1 1

L

n

n

n x A
c A dx n

L L n

A

n








 
   

 

 


 

The solution in this case is 

   

   

2 2 2

2

2 2 2

2

1

2 1

1

2
, 1 1 sin

2 14 1
           = sin

2 1

n a t
n

L

n

n a t

L

n

A n x
u x t e

n L

n xA
e

n L

















 



         

 
 

  





 

We got the last summation from the preceding line by noticing that  1 1 0
n

    if n is even, so all the 

terms in the series vanish for n even and we need only retain the terms with n odd. This is done by replacing 

n  with 2 1n  , there by summing over only the odd positive integers. 

Problems: Solve the following boundary value problem: 

 

     

     

2
2

2
1.          0 , 0

  0, , 0     0

  ,0         0

u u
a x L t

t x

u t u L t t

u x x L x x L

 
   

 

  

   
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 

     

     

2

2

2

2. 4            0 , 0

   0, , 0        0

   ,0         0

u u
x L t

t x

u t u L t t

u x x L x x L

 
   

 

  

   

 

 

     

   

2

2
3. 3         0 , 0

   0, , 0         0

2
   ,0 1 cos          0

u u
x L t

t x

u t u L t t

x
u x L x L

L



 
   

 

  

  
     

  

 

1.2.2 Temperature in a Bar with Insulated Ends 

Consider heat conduction in a bar with insulated ends, hence no energy loss across the ends. If the initial 

temperature is given by  f x , then the temperature function is modeled by the B.V.P. 

 

     

     

2
2

2
            0 , 0

0, , 0        0

,0                   0

u u
a x L t

t x

u u
t L t t

x x

u x f x x L

 
   

 

 
  

 

  

 

We will solve for  ,u x t , leaving out some details, which are the same as in the preceding problem. Set  

     ,u x t X x T t  

And substitute into the heat equation to get  

2

" 'X T

X a T
    

In which  is the separation constant. Then, 

" 0X X   

and 2' 0T a T   

as before. Also, 

     0, ' 0 0
u

t X T t
x


 


 

implies that  ' 0 0X  . The other boundary condition implies that  ' 0X L  . The other boundary 

condition implies that  ' 0X L  . The problem for X is therefore               
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 

     

" 0             ... 1

' 0 ' 0     ... 2

X X

X X L

 

 
 

We seek values of   for which this problem has non-trivial solutions.  

Consider cases on  : 

Case 1: 0   

The general solution for (1) is 

 X x cx d   

Since  ' 0 0X c  , therefore, 0 is an eigen value of (1) with eigen function. 

   constant 0X x    

Case 2: 0   

Write 2k   with 0k  . Then, 
2" 0,X k X  with general solution 

    kx kxX x ce de   

Now, 

 
   

   

' 0 0   0  

kx kx

X kc kd c d k

X x c e e

     

  
 

Next, 

   ' 0 kL kLX L ck e e    

This is zero only if c=0. But this forces    0X x  , so choosing   negative eigen value. 

Case 3: 0   

Set 2k  , with 0k  .Then, 

2" 0X k X   

with general solution 

  cos sinX x c kx d kx   

Now,  ' 0 0X dk   

implies that d=0. Then,     cos .X x c kx  

Next,  ' sin 0 X L ck kL    
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In order to get a non-trivial solution, we need 0c  , and must choose k so that sin 0kL  , therefore 

kL n  

for n, a positive integer, and this problem has eigen values 

 
2 2

2

2

n
k

L


   ; for n=1,2,… 

Corresponding to such an eigen value, the eigen function is  

  cos  n n

n x
X x c

L

 
  

 
, for n=1,2,… 

We can combine case 1 and case 3, by writing the eigen values as  

 
2 2

2
     for  n=0,1,2,...

n

L


   

and eigen functions as 

  cosn n

n x
X x c

L

 
  

 
 

This is a constant functions, corresponding to 0  , when n=0. 

The equation for T is 

 
2 2 2

2
' 0

n a T
T

L


   

When n=0, this has solutions 

  0 0 constant =dT t   

If n=1,2,…, then 

 

2 2 2

2

n a T

L
n nT t d e



  

Now let 

 0 0,  constant =au x t   

and  

2 2 2

2

, cos

n a t

L
n n

n x
u x t a e

L





 

  
 

, where n n na c d  

Each of these functions satisfies the heat equation and boundary conditions. To satisfy the initial condition, 

we must usually attempt a superposition of these functions: 

   

2 2 2

2

0

0 1

, , cos

n a t

L
n n

n n

n x
u x t u x t a a e

L




 

 

 
    

 
   
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We must choose the 'na s  so that 

   0

1

,0 cosn

n

n x
u x a a f x

L





 
   

 
  

This is a Fourier cosine expansion of  f x  on [0,L], so choose  

 0

0

1
L

a f d
L

    

and, for n=1,2,… 

 
0

2
cos

L

n

n
a f d

L L


 

 
  

 
  

The solution is 

     

2 2 2

2

10 0

1 2
, cos cos

n a tL L

L

n

n n x
u x t f d f d e

L L L L


 

   




    
      

    
   

Example: Suppose the left half of the bar is initially at temperature A and the right half at temperature 

zero. Then, 

 

2

0

0

2

0

     , 0<x<
2

0      , 
2

1
    a = 

2

2 2
and  a =  cos sin          

2

L

L

n

L
A

f x
L

x L

A
Ad

L

n A n
A d

L L n



 







 
  


 

   
   

   





 

The solution for this temperature distribution is 

 

2 2 2

2

1

2 1
, sin cos

2 2

n a t

L

n

A A n n x
u x t e

n L


 







   
     

   
  

Since sin
2

n 
 
 

 is zero if n is even and equals  
1

1
k

  if n=2k+1. We may omit all terms of this series in 

which the summation index is even, and sum over only the odd positive integers. This is done by replacing 

n with 2n-1 in the function being summed. Then, 

 
     

2 2 2

2

1 2 1

1

1 2 12
, cos

2 2 1

n n a t

L

n

n xA A
u x t e

n L






  



  
   

  
  
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Problems: 

Solve the following B.V.P.’s: 

 

     

   

2

2
1.       0 , 0

  0, , 0      0

   u ,0 sin        0

u u
x t

t x

u u
t t t

x x

x x x







 
   

 

 
  

 

  

 

 

     

     

2

2
2. 4       0 2 , 0

  0, 2 , 0      0

   u ,0 2        0 2

u u
x t

t x

u u
t t t

x x

x x x x





 

 
   

 

 
  

 

   

 

3. A thin homogeneous bar of length L has insulated ends initial temperature B, a positive constant. Find 

the temperature distribution in the bar. 

4. A thin homogeneous bar of length L has initial temperature equal to a constant B and the right end 

(x=L) is insulated, while the left end is kept at a zero temperature. Find the temperature distribution in the 

bar. 

5. A thin homogeneous bar of thermal diffusivity 9 and length 2 cm and insulated has its left end 

maintained at temperature zero, while the right end is perfectly insulated. The bar has an initial temperature 

given by   2f x x  for 0<x<2. Determine the temperature distribution in the bar. What is  lim ,
t

u x t


? 

1.2.3 Temperature Distribution in a Bar with Radiating End 

Consider a thin, homogeneous bar of length L, with the left end maintained at temperature zero, while the 

right end radiates energy into the surrounding medium, which also is kept at temperature zero. If the initial 

temperature in the bar’s cross section at x is f(x), then the temperature distribution is modeled by the B.V.P. 

 

       

     

2
2

2
         0 , 0

0, 0,   , ,    0

,0       0

u u
a x L t

t x

u
u t L t Au L t t

x

u x f x x L

 
   

 


   



  

 

The boundary condition at L assumes that heat energy radiates from this end at a rate proportional to the 

temperature at that end of the bar, A is a positive constant called the transfer co-efficient.  

Let      ,u x t X x T t  to obtain, as before, 

2

" 0

' 0

X X

T a T





 

 
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Since, 

     

 

0, 0 0,  then

0 0

u t X T t

X

 


 

as   0T t  , implies that  , 0u x t  which is possible only if   0f x  . The condition at the right end of 

the bar implies that  

       

   

     '

' 0

X L T t AX L T t

X L AX L

 

  
 

The problem for  X x  is therefore, 

     

" 0

0 ' 0

X X

X X L AX L

 

  
 

From the strum-Liouville theorem, we can be confident that this problem has infinitely many eigen values 

1 2, ,...,   each of which is associated with a non-trivial solution, or eigen functions,  nX x . We would 

like, however, to know these solutions, so we will consider cases: 

Cases 1: 0  , 

Then, the solution for  X x  is 

 X x cx d   

Since,  0 0X d  , then 

 X x cx  

But then 

   'X x c AX L AcL      

Then, 

 1 0c AL 
 

But 1 0AL  , so c=0 and we get only the trivial solution from this case. This means that 0 is not an eigen 

value of this problem. 

Case 2: 0  , write 2k   , with 0k  .Then, 

2" 0X k X  , so 

  kx kxX x ce de   
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Now,  0 0 .X c d d c       

     2 sinhkx kxX x c e e c kx     

Then,      ' 2 cosh sinhX L ck kL Ac kL    

To have a non-trivial solution, we must have 0c   and this requires that  

   2 cosh sinh 0k kL A kL   

This is impossible because 0,Lk   so the left side of this equation is a sum of positive numbers. Therefore, 

this problem has no negative eigen value. 

Case 3: 0,  write 
2 ,k  with 0k  . Then, 

2" 0X k X  , so 

  cos sinX x c kx d kx   

Now,  0 0,X c  so   sin .X x d kx  

Further,        ' cos sin 0X L AX L dk kL Ad kL     

To have a non-trivial solution, we must have 0d  , and this requires that  

   cos sin 0k kL A kL   

or  tan
k

kL
A


  

Let z kL . Then, this equation is  

 tan
z

z
AL


  

Since 
2

2
,  then n

n

zz
k

L L
   

is an eigen value of this problem for each positive integer n which is shown in Figure below,  

 

Figure: The eigen values of the problem for a bar with radiating ends with corresponding eigen function 
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   sin n
n n

z x
X x a

L

 
  

 
 

The equation for T is 

2 2

2
' 0na z T

T
L

   

So   

2 2

2

na z t

L
n nT t d e



  

For each positive integer n, let  

 

2 2

2

, sin  where c
na z t

n L
n n n n n

z x
u x t c e a d

L


 

  
 

 

Each such function satisfies the heat equation and the boundary conditions. To satisfy the initial 

conditions, let  

 

2

2

1

, sin
n na z t

n L
n

n

z x
u x t c e

L





 
  

 
  

we must choose the 'nc s  so that 

   
1

,0 sin n
n

n

z x
u x c f x

L





 
  

 
  

Unlike what we encountered in the other two examples, this is not a standard’s Fourier series, because of 

the 'nz s . Indeed, we do not know these numbers, because they are solutions of a transcendental equation 

we cannot solve exactly. 

At this point we must rely on the Strum- Liouville theorem, which states that the eigen functions of the 

Strum- Liouville problem are orthogonal on [0,L] with weight function 1. This means that if n and m are 

distinct positive integers, then 

0

sin sin 0

L

m nz x z x
dx

L L

   
   

   
  

This is like the orthogonality relationship used to derive co-efficient of Fourier series and can be exploited 

in the same way to find the  

 
0

2

0

sin

sin

L

n

n L

n

z x
f x dx

L
c

z x
dx

L

 
 
 


 
 
 





 

With this choice of co-efficient, the solution is  
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 
  2 2

20

1 2

0

sin

, sin

sin

n

L

n
a z t

n L
L

n n

z
f d

L z x
u x t e

Lz
d

L


 








  
  

          
  

  






 

Problems: 

1. A thin, homogeneous bar of thermal diffusivity 4 and length 6 cm with insulated sides, has its end 

maintained at temperature zero. Its right end is radiating (with transfer co-efficient 
1

2
) into the 

surrounding medium, which has temperature zero. The bar has an initial temperature given by

   6f x x x   .  Approximate the temperature distribution  ,u x t  by finding the fourth partial 

sum of the series representation for  ,u x t . 

1.2.4 Heat Conduction in a Bar with Ends at Different Temperature 

Consider a thin, homogeneous bar extending from 0 to x x L  . The left end is maintained at constant 

temperature 1T  and the right end at constant temperature 2T . The initial temperature throughout the bar in 

the cross-section at x is ( )f x . 

The boundary value problem for the temperature distribution is: 

2
2

2

1 2

 (0  ,  0)

(0, )  ,  ( , )  ( 0)

( ,0) ( ) (0 )

u u
a x L t

t x

u t T u L t T t

u x f x x L

 
   

 

  

  

 

Put ( , ) ( ) ( )u x t X x T t into the heat equation to obtain,  

2

" 0

' 0

X X

T a T





 

 
 

Unlike the preceding example, there is nothing in this partial differential equation that prevents separation 

of the variables. The difficulty encountered here is with the boundary conditions which are non-

homogeneous ( (0, ) and ( , )u t u L t  may be non-zero). To see the effect of this consider, 

1(0, ) (0) ( )u t X T t T   

If 1 0T  , we could conclude that (0) 0X  . But if 1 0T  , this equation forces us to conclude that 

1( ) constant
(0)

T
T t

X
  .This is a condition, we cannot except to satisfy. The boundary condition at L

possess the same problem. 

We attempt to eliminate the problem by perturbing the function. Set  

( , ) ( , ) ( )u x t U x t x   
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We want to choose ( )x  to obtain a problem, we can solve. 

Substitute ( , )u x t  into the partial differential equation to get 

2
2 2

2
"( )

u u
a a x

t x


 
 

 
 

We obtain the heat equation for U if "( ) 0x  . Integrating twice, ( )x  must have the form 

( )     ...(1)x Cx D    

Now, consider the boundary conditions, first 

1(0, ) (0, ) (0)u t T U t     

This condition becomes (0, ) 0U t   if we choose ( )x  so that  

1(0)         ...(2)T   

The condition 

2( , ) ( , ) ( )u L t T U L t L    

becomes ( , ) 0U L t   if  

2( )        ...(3)L T   

Now, use (2) and (3) to solve for C and D in (1), 

1

1 2 2 1

     (0)

1
and ( ) ( )

D T

L CL T T C T T
L





 

     
 

Thus, choose 

2 1 1

1
 ( ) ( )x T T x T

L
     

with this choice, the boundary value problem for ( , )U x t  is  

2
2

2

2 1 1

(0, ) ( , ) 0

1
( ,0) ( ,0) ( ) ( ) ( )

U U
a

t x

U t U L t

U x u x x f x T T x T
L



 


 

 

     

 

We have solved this problem earlier, with the solution 
2 2 2

2

2 1

1 0

2 1
( , )  ( ) ( ) sin sin

n a tL

L

n

n n x
U x t f T T x T d e

L L L L


 

 




      
        

      
   

Once, we know this function, then 

2 1 1

1
( , ) ( , ) ( )u x t U x t T T x T

L
     
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1.3 Steady–State Temperature in Plates 

The two-dimensional Heat equation is 

2 2
2 2 2

2 2

u u u
a a u

t x y

   
    

   
 

The steady-state case occurs when we set 0
u

t





. In this event, the Heat equation is Laplace’s equation 

2 0u   

A Dirichlet problem consists of Laplace’s equation, to be solved for (x,y) in a region R of the plane, 

together with prescribed values the solution is to assumes on the boundary of R, which is usually a 

piecewise smooth curve. If we think of R as a flat plate, then we are finding the steady-state temperature 

distribution throughout a plate, given the temperature at all timers on its boundary. 

1.3.1 Steady-State Temperature in a Rectangular Plate 

Consider a flat rectangular plate occupying the region R in the xy-plane by 0 ,  0 .x a y b     Suppose 

the right side is kept at constant temperature T, while the other sides are kept at temperature zero. The 

boundary value problem for the steady-state temperature distribution is: 

2 0 (0 ,0 )

( ,0) ( , ) 0 (0 )

(0, ) 0   (0 )

( , )   (0 )

u x a y b

u x u x b x a

u y y b

u a y T y b

     

   

  

  

 

Put ( , ) ( ) ( )u x y X x Y y into Laplace’s equation to get 

" " 0

" "

X Y Y X

X Y

X Y

 

 
 

Since the left side depends only on x and the right side only on y, and these variables are independent, 

both sides must equal the same constant. 

" "
 (say)

X Y

X Y
    

Now, use the boundary condition: 

( ,0) ( ) (0) 0 (0) 0

( , ) ( ) ( ) 0 ( ) 0

u x X x Y Y

u x b X x Y b Y b

   

   
 

and (0, ) (0) ( ) 0 (0) 0u y X Y y X     

Therefore, ( )X x must satisfy 
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" 0

(0) 0

X X

X

 


 

and, Y must satisfy 

" 0

(0) ( ) 0

Y Y

Y Y b

 

 
 

This problem for ( )Y y was solved in the article (Ends of the bar kept at temperature zero) with ( )X x  in 

place of ( )Y y and L in place of b. 

The eigen values are 

2 2

2n

n

b


   

with corresponding eigen functions 

( ) sin  for n=1,2,...n n

n y
Y y b

b

 
  

 
 

The problems for X is now  

2 2

2
" 0

(0) 0

n
X X

b

X


 



 

The general solution of the differential equation is 

( )
n x n x

b b
nX x ce de

 

   

Since (0) 0X c d d c       and so 

( ) 2 sinh
n x n x

b b
n n

n x
X x c e e c

b

 


   
     

  
 

For each positive integer n, let 

( , ) sinh sin  ;  where a 2n n n n n

n x n y
u x y a b c

b b

    
    

   
 

For each n and any choice of the constant na  this function satisfies Laplace’s equation and the zero 

boundary conditions on three sides of the plate. For the non-zero boundary condition, we must use a 

superposition 

1

( , ) sin sinhn

n

n y n a
u a y T a

b b

 



   
     

   
  
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This is a Fourier sine expansion of T on [a,b]. Therefore, choose the entire co-efficient  

sin
n y

b

 
 
 

as the Fourier sine co-efficient: 

 

0

2
sinh sin  

2
                     1 1 ,

b

n

n

n a n y
a T dy

b b b

T b

b n

 



   
   

   

   
 


 

in which we have used the fact that  cos 1 ,
n

n    if n is an integer. 

We now have 

 
2 1

1 1

sinh

n

n

T
a

n an

b


   
  

 
 

 

The solution is  

 
1

2 1
( , ) 1 1 sinh sin

sinh

n

n

T n x n y
u x y

n a b b
n

b

 







                
 
 

  

As we have done before, observe that  1 1
n

   equals 0 if n is even, and equals 2 if n is odd. We can 

therefore omit the even indices in this summation, writing the solution as:  

1

4 1 (2 1) (2 1)
( , ) sinh sin

(2 1)
(2 1)sinhn

T n x n y
u x y

n a b b
n

b

 







    
           

 

  

Problems: 1. Solve for the steady-state temperature distribution in a flat plate covering the region 

0 ,  0 ,x a y b    if the temperature on the vertical sides and the bottom side are kept at zero while the 

temperature on the top side is a constant K. 

2.Solve for the steady-state temperature distribution is a flat plate covering the region 0 ,  0 ,x a y b   

if the temperature on the left side is a constant 1T and that on right side a constant 2T , while the top and 

bottom sides are kept at temperature zero. 

[Hint: Consider two separate problems. In the first, the temperature on the left side is 1T and the other 

sides are kept at temperature zero. In the second, the temperature on the right side is 2T , while the other 

sides are kept at zero. The sum of solutions of these problems is the solution of the original problem.] 
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Remark: It is possible to treat the case where the four sides are kept at different temperature (not 

necessarily constant), by considering four plates, in each of which the temperature is non-zero on only 

one side of the plate. The sum of the solutions of these four problems is the solution for the original plate. 

1.3.2 Steady-State Temperature in a Circular Disc 

Consider a thin disk of radius R, placed in the plane so that its centre is the origin. We will find the steady-

state temperature distribution  ( , )u r   as a function of polar co-ordinates. The Laplace’s equation in polar 

co-ordinates is 

2 2

2 2 2

1 1
0

u u u

r r r r 

  
  

  
 

for 0  and r R         

Assume that the temperature is known on the boundary of the disk: 

   ,        for       -u R f        

In order to determine a unique solution for u, we will specify two additional conditions, First we seek a 

bounded solution. This is certainly a physically reasonable condition. Second we assume periodically 

conditions: 

   , ,      and        ( , ) ( , )
u u

u r u r r r   
 

 
   

 
 

These conditions account for the fact that ( , )r   and ( , )r   are polar co-ordinates of the same point. 

Attempt a solution 

( , ) ( ) ( )u r F r G   

Substitute this into the Laplace’s equation, we get 

2

1 1
"( ) ( ) '( ) ( ) ( ) "( ) 0F r G F r G F r G

r r
      

If ( ) ( ) 0F r G   , this equation can be written 

2 "( ) '( ) "( )

( ) ( )

r F r rF r G

F r G






   

Since the left side of this equation depends only on r and the right side only on  , and these variables are 

independent, both sides must equal same constant 

2 "( ) '( ) "( )

( ) ( )

r F r rF r G

F r G







    

which gives 
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2 "( ) '( ) ( ) 0       ...(1)

and  G"( )+ G( )=0

r F r rF r F r

  

  
 

Now, consider the boundary conditions. First  

( , ) ( , ) ( ) ( ) ( ) ( )u r u r G F r G F r         

Assuming ( )F r  is not identically zero, then 

( ) ( )G G    

Similarly, 

( , ) ( ) '( ) ( , ) ( ) '( )

'( ) '( )

u u
r F r G r F r G

G G

   
 

 

 
    

 

  

 

The problem to solve ( )G   is therefore 

 

"( ) ( ) 0

( ) ( )                 ... 2

'( ) '( )

G G

G G

G G

  

 

 

  


  
  

 

This is a periodic Strum-Liouville problem and first we solve it by considering different cases: 

Case 1: 0   

In this case, the equation reduces to 

"( ) 0G    

with the general solution 

( )G c d    

Now, 

 

( ) ( ) 2 0

0

( )

G G c d c d d

d

G c

    



       

 

 

 

which satisfies '( ) '( )G G    

Thus, 0   is an eigen value of the problem with eigen function  

0( ) constantG c    

Case 2: 0   

Let 2n    

Then, the differential equation (2) is  
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2"( ) ( ) 0G n G    

with the general solution given by 

( ) n nG ce de     

Now, 

 

( ) ( )

( ) 0

n n n n

n n

G G ce de ce de

G c e e c d c d

   

 

 



 



     

       
 

Also, 

'( ) '( ) ( ) ( )

2 0 0

( ) 0

n n n nG G cn e e cn e e

cn c

G

    



      

   

 

 

Thus, we have no eigen value in this case. 

Case 3: 0   

Let 2k  . Then, the differential equation (2) is 

2"( ) ( ) 0G k G    

with the general solution given by 

( ) cos( ) sin( )G c k d k     

Now,  

( ) ( ) cos( ) sin( ) cos( ) sin( )

2 sin( ) 0

G G c k d k c k d k

d k

     



     

 
 

For a non-trivial solution, we take 

         for n=1,2...

     for n=1,2...

k n

k n

 

 
 

Similarly, result holds for '( ) '( )G G    

Thus, the general solution is given by 

( ) cos( ) sin( )n n nG c n d n     

Thus, the eigen values for the SLBVP (2) is 

2  ; n=0,1,2,3...n   

and the eigen function is 
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0 0( )

( ) cos( ) sin( )n n n

G c

G c n d n



  



 
 

Now, let 2n   to get (1) as 

2"( ) '( ) ( ) 0rF r rF r n F r    

This is a second order Euler differential equation with general solution  

0 0

      ( )   ,  for n=1,2,3...

and ( ) constant  ,  for n=0

n n

n n nF r a r b r

F r a

 

 
 

The requirement that the solution must be bounded forces to choose each 0nb   because 

 as 0nr r   (centre of the disk). 

Combining cases, we can write 

( )   for  n=0,1,2...n

n nF r a r  

For n=0,1,2…, we now have functions of the form 

 ( , ) ( ) ( ) cos( ) sin( )n

n n n n n nu r F r G a r c n d n       

Setting  and ,n n n n n nA a c B a d  we have 

 ( , ) cos( ) sin( )n

n n nu r r A n B n     

These functions satisfy Laplace’s equation and the periodicity conditions, as well as the condition that 

solutions must be bounded. For any given n, this function will generally not satisfy the initial condition 

( , ) ( )u R f   

For this, use the superposition 

 0

1

( , ) cos( ) sin( )n

n n

n

u r A r A n B n  




    

Now, the initial condition requires that 

0

1

( , ) ( ) cos( ) sin( )n n

n n

n

u R f A A R n B R n   




       

This is the Fourier series expansion of ( )f  on [ , ]  . Thus, choose  

0

1
( )

2

1 1
( )cos ( )cos

1 1
and  B ( )sin ( )sin

n

n n n

n

n n n

A f d

A R f n d A f n d
R

R f n d B f n d
R





 

 

 

 

 


     
 

     
 



 

 



  

  



 

 
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Example: As a specific example, suppose the disk has radius 3 and that ( ) 2f    . A routine 

integration gives  

 
0

1

        2 ,  0  for  n=1,2,3...

2
and  ( 1)

.3

n

n

n n

A A

B
n



 

 
 

The solution for this condition is 

1

1

2
( , ) 2 ( 1) sin( )

3

for 0 3  and  .

n

n

n

r
u r n

n

r

 

  






 
    

 

    

  

Problems: 

1. Find the steady-state temperature for a thin disk 

i. of radius R with temperature on boundary is 
2( ) cos   for  -f         

ii. of radius 1 with temperature on boundary is 
3( ) cos   for  -f         

iii. of radius R with temperature on boundary is constant T. 

2. Use the solution of steady-state temperature distribution in a thin disk to show that the temperature at 

the centre of disk is the average of the temperature values on the circumference of the disk. 

[Hint: For temperature on the centre of disk, we let 0r  , so that 0

1
( , ) ( )

2
u r A f d





  




    

which is the average of ( )f  , the temperature on the circumference of the disk.] 

3. Find the steady-state temperature in the flat wedge-shaped plate occupying the region 

0  ,  0r k       (in polar co-ordinates). The sides 0 and      are kept at temperature zero and 

the ark r k  for 0    is kept at temperature T. 

[Hint: The BVP for this situation is 

2 2

2 2 2

1 1
0

( ,0) ( , ) 0 (0 )

( , )  (0 )

u u u

r r r r

u r u r r k

u k T





  

  
  

  

   

  

 

1.3.3 Steady-State Temperature Distribution in a Semi-infinite Strip 

Find the steady-state temperature distribution in a semi-infinite strip 0,  0 1,x y    pictured in figure. 

The temperature on the top side and bottom side are kept at zero, while the left side is kept at temperature 

T. 

The boundary value problem modelling this problem is: 
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 
2 2

2 2
0            0 1, 0

( ,0) 0 ( ,1)    (x 0)

u(0,y)=T                     (0 1)

u u
y x

x y

u x u x

y

 
    

 

  

 

 

Put ( , ) ( ) ( )u x y X x Y y  into Laplace’s equation to get 

" "
" " 0  

X Y
X Y XY

X Y


     

Since the left side depends only on x and right side only on x, and these variables are independent, both 

sides must equal the same constant: 

" "X Y

X Y



   

Now, use the boundary conditions: 

( ,0) ( ) (0) 0 (0) 0

( ,1) ( ) (1) 0 (1) 0

u x X x Y Y

u x X x Y y

   

   
 

Therefore, X must satisfy 

" 0X X   

and, Y must satisfy 

" 0

(0) (1) 0

Y Y

Y Y

 

 
 

The solution for the equation for ( )Y y  is given by (by above article) 

( ) sin( )     for n=1,2,...n nY y a n y  

with the eigen value given by 

2 2

n n   

The problem for ( )X x is now 

2 2" 0X n X   

The general solution of the differential equation is  

( ) n x n x

n n nX x b e c e    

Now, since ( , ) ,  so 0nu x y b   , otherwise ( )  as x .nX x   Thus, we have 

( ) n x

n nX x c e   
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Thus, solution for each n is 

( , ) sin( ) , where dn x

n n n n nu x y d e n y a c    

For each n, using the superposition, we have 

1

( , ) sin( )n x

n

n

u x y d e n y 






  

We want to choose the constant nd , so that 

1

(0, ) sin( )n

n

u y T d n y




   

which is Fourier sine expansion of T on [0,1]. Therefore, choose the entire co-efficient of sin( )n y  as the 

Fourier sine co-efficient: 

1

0

2 sin( )

2
   1 ( 1)

n

n

d T n y dy

T

n







    


  [As in above article] 

Problem:             

1. Find a steady-state temperature distribution in the semi-infinite region 0 , 0x a y   if the temperature 

on the bottom and left sides are at zero and the temperature on the right side is kept at constant T. 

2. Find the steady-state temperature distribution in the semi-infinite region 0 4, 0x y   if the 

temperature on the vertical sides are kept at constant T and temperature on the bottom side is kept at 

zero. 

[Hint: Assume two semi-infinite regions, first with left end at temperature T and right end and bottom 

at temperature zero, second with right end at temperature zero and left end and bottom at temperature 

zero. Sum of these two solutions is the solution of the original problem.] 

3. Use your intuition to guess the steady-state temperature in a thin rod of length L if the ends are perfectly 

insulated and the initial temperature is ( ) for 0 .f x x L   

[Hint: The boundary value problem modelling this problem is 

2 2

2 2
0         (0 ) ( 0)

(0, ) 0 ( , )      ( 0)

( ,0) ( )         (0 )

u u
x L t

t x

u u
t L t t

x x

u x f x x L

 
    

 

 
  

 

  
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1.3.4 Steady-State Temperature in a Semi-infinite Plate 

The B.V.P. is  

2 2

2 2
0     (0 , 0)

( ,0) 0 ( , )          ( 0)

(0, )     (0 )

u u
y b x

x y

u x u x b x

u y T y b

 
    

 

  

  

 

Put ( , ) ( ) ( )u x y X x Y y  into the given Laplace equation, we obtain 

'' ''
'' '' 0

X Y
X Y XY

X Y
        

Since the left side is depend on x  only while right hand side is y  only. So both side must be equal to 

some constant. Let the constant of separation coefficient is  . The above equation becomes  

'' 0X X   and '' 0Y Y    

And the boundary condition  
( ,0) ( ) (0) 0 (0) 0

( , ) ( ) ( ) 0 ( ) 0

u x X x Y Y

u x b X x Y b Y b

   

   
  

Here we have more information for problem Y  with equations 

 
'' 0

(0) 0 ( ) 0

Y

Y and Y b

 

 
  

In earlier article, we solve such problem and preceding like that, we have solution  

 sin 1,2,3...n n

n y
Y a for n

b

 
  

 
   

with the eigen value 

2 2

2n

n

b


  . 

Now the problem for X is 

2 2

2
'' 0

n
X X

b


    

The general solution is  

( )
n x n x

b b
n n nX x b e c e

 


    

For a bounded solution in the given domain, we have to assume 0nb  . Now the solution becomes

( )
n x

b
n nX x c e




  . Thus the solution for each n by using the superposition is 
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1

( , ) sin
n x

b
n n n n

n

n y
u x y d e where d a c

b


 



 
  

 
   

Now using the condition (0, ) ,u T T we have  

1

(0, ) sinn

n

n y
u y T d

b





 
   

 
  which is a Fourier sine expansion of  T on [0,1]. The 

coefficient   

0

2 sin

b

n

n y
d T dy

b

 
  

 
   

  
2

1 1
nT

n
   
 

  

 
1

2
( , ) 1 1 sin

n x
n

b

n

T n y
u x y e

n b










          
   

1.3.5 Steady-State Temperature in an Infinite Plate 

Suppose we want the steady-state temperature distribution in a thin, flat plate extending over the right 

quarter plane 0, 0x y  . Assume that the temperature on the vertical side 0x   is kept at zero, while 

the bottom side 0y   is kept at a temperature ( )f x . 

The BVP modelling this problem is: 

2 2

2 2
0     ( 0, 0)

(0, ) 0          ( 0)

( ,0) ( )    ( 0)

u u
x y

x y

u y y

u x f x x

 
   

 

 

 

 

Now solving as in previous examples we get 

0

( , ) sin( ) ky

ku x y c kx e dk



   

Finally, we require that 

0

( ,0) ( ) sin( )ku x f x c kx dk



    

This is the Fourier sine integral of ( ) on [0, )f x  , so choose 

0

2
( )sin( )kc f k d  





   

Thus, the solution for the problem is 
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0 0

2
( , ) ( )sin( ) sin( ) kyu x y f k d kx e dk  



 


 

  
 
   

Example: Assume that in the above problem 

4 ,     0 2
( )

0 ,     2

x
f x

x

 
 


 

Then, 

 

0

0

2
( )sin( )

2
   4sin( )

8
   1 cos(2 )

kc f k d

k d

k
k

  


 












 



  

Thus,  

0

8 1 cos 2
( , ) sin( ) kyk

u x y kx e dk
k



 
  

 
  

1.4 Heat Equation in Unbounded Domains 

Here, we will discuss the problems of temperature distribution in a bar with the space variable extending 

over the real line or half line.  

1.4.1 Heat Conduction in a Semi-Infinite Bar 

Suppose we want the temperature distribution in a Bar stretching from 0 to  along the x-axis. The left 

end is kept at temperature zero and the initial temperature in the cross-section at x is ( )f x . 

The boundary value problem for the temperature distribution is: 

2
2

2
      ( 0, 0)

( ,0) ( )   ( 0)

(0, ) 0         ( 0)

u u
a x t

t x

u x f x x

u t t

 
  

 

 

 

 

As usual, we seek a solution, which is bounded.  

Set, 

2

( , ) ( ) ( ) to get

" 0  ( 0)

' 0 ( 0)

u x t X x T t

X X x

T a T t







  

  

 

Now as in previous examples, we get 
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2 2

( , ) sin( ) ,  where a k t

k k k ku x t d kx e d a b   

Now, using the superposition 

   
2 2

0

( , ) sin( )      ...(1)a k t

ku x t d kx e dk



   

Finally, we must satisfy the initial condition: 

0

( ) ( ,0) sin( )      ...(2)kf x u x d kx dk



    

For this choice the 'kd s are the Fourier sine integral co-efficient of ( )f x ; so 

0

2
( )sin( )kd f k d  





   

With this choice of the co-efficient, the function defined by (1) is a solution of the problem. 

Example: Suppose  

  ,  0 x
( )

0        ,  

x
f x

x

 



  
 


 

Then, 
0

2 2 sin( )
( )sin( ) 1k

k
d k d

k k




   
 

 
    

 
  

The solution is 

2 2

0

2 sin( )
( , ) 1 sin( ) k tk

u x t kx e dk
k k







 
  

 
  

1.4.2 Heat Conduction in Infinite Bar 

Suppose we want the temperature distribution in a Bar stretching from  to   along the x-axis. The 

initial temperature in the cross-section at x is ( )f x . The boundary value problem for the temperature 

distribution is: 

2
2

2
      ( , 0)

( ,0) ( )   ( )

u u
a x t

t x

u x f x x

 
     

 

    

 

There are no boundary conditions, so we impose the physically realistic condition that solutions should 

be bounded. As usual, we seek a solution, which is bounded.  

Set, 



Heat, Wave and Laplace Equations 41 

 

2

( , ) ( ) ( ) to get

" 0  ( )

' 0 ( 0)

u x t X x T t

X X x

T a T t







     

  

 

Now as in previous examples, we get 

2 2

( , ) ( cos( ) sin( )) ,  a k t

k k ku x t a kx b kx e   

that satisfy the Heat equation and are bounded on the real line over all k>0. Now, using the superposition 

2 2

0

( , ) ( cos( ) sin( ))      ...(1)a k t

k ku x t a kx b kx e dk



   

Finally, we must satisfy the initial condition: 

0

( ) ( ,0) ( cos( ) sin( ))      ...(2)k kf x u x a kx b kx dk



    

For this choice the 'ka s  and 'kb s are the Fourier sine integral co-efficient of ( )f x ; so 

1
( )cos( )ka f k d  







   

and 

1
( )sin( )ka f k d  







   

With this choice of the co-efficient, the function defined by (1) is a solution of the problem. 

1.5 Solution of Heat, Laplace and Wave Equations 

1.5.1 Solution of Three-Dimensional Heat Equations in Cartesian co-ordinates 

It is a partial differential equation of the form: 

2 2 2
2

2 2 2
               ...(1)

u u u u
h

t x y z

    
   

    
 

To find its solution by the method of separation of variables, suppose that the solution of (1) is 

( , , , ) ( ) ( ) ( ) ( )           ...(2)  u x y z t X x Y y Z z T t  

where ( )X x  is a function of x only, ( )Y y  is a function of y only, ( )Z z  is a function of z only and ( )T t  is 

a function of t only. 

We get on separating the variables 

2 2 2

2 2 2 2

1 1 1 1
               ...(3)

d X d Y d Z dT

X dx Y dy Y dz h T dt
    
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Choosing the constant of separation such that 

2 2 2
2 2 2 2 2 2 2 2

1 2 3 1 2 32 2 2 2

1 1 1 1
, , and  ,where +              

d X d Y d Z dT
p p p p p p p p

X dx Y dy Z dz h T dt
           

Thus, we have the following three equations 

2
2

12

2
2

22

2
2

32

2 2

0

0

0

0

d X
p X

dx

d Y
p Y

dy

d Z
p Z

dz

dT
p h T

dt

 

 

 

 

 

with the solutions 

2 2 2 22 2
1 2 3

1 1

2 2

3 3

( )

( ) cos sin

( ) cos sin

( ) cos sin

( )
p p p h tp h t

X x A p x B p x

Y y C p y D p y

Y y E p z F p z

T t Ge Ge
  

 

 

 

 

 

Combining these solutions and using the superposition, we get 

2 2 2 2
1 2 3

1 2 3

( )

1 1 2 2 3 3

, , 1

( , , , ) ( cos sin )( cos sin )( cos sin )
p p p h t

p p p

u x y z t A p x B p x C p y D p y E p z F p z Ge


  



     

Corollary: The Heat equation in two-dimensional is  

2 2
2

2 2
              

u u u
h

t x y

   
  

     

The solution is  

2 2 2
1 2

1 2

( )

1 1 2 2

, 1

( , , ) ( cos sin )( cos sin )
p p h t

p p

u x y t A p x B p x C p y D p y Ee


 



  
 

1.5.2 Solution of Heat Equation in Cylindrical Polar Co-ordinates 

In cylindrical co-ordinates, Heat equation has the form 

2 2 2

2 2 2 2 2

1 1 1
                                                  ...(1)

u u u u u

r r r r z h t

    
   

    
 

To solve it by the method by separation of variables, we have 

( , , , ) ( ) ( ) ( ) ( )                                                   ...(2)u r z t R r Z z T t    
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giving 

   

 

 

2 2

2 2

2 2 2 2

2 2 2 2

( ) ( )             ,           ( ) ( )

( ) ( ) ( )         ,          ( ) ( )

 ( ) ( )

u dR u d R
Z z T t Z z T t

r dr r dr

u d u d Z
R r Z z T t R r T t

d z dz

u dT
R r Z z

t dt

 


 



 
   

 

  
  

 


 



 

Substituting all these values in equation (1), we get 

2 2 2

2 2 2 2 2

1 1 1 1d R dR d d Z dT

R dr r dr r d dz h T dt

  
    

 
 

Using the method of separation of variables, we have  

2 2 2

2

1
0           (3)

dT dT
h t

h T dt dt
     

 
2 2

2 2 2

2 2
0           (4)

d Z d Z
h t

dz dz
       

and     

2 2
2 2

2 2

1
0        ...(5)

d d

d d
 

 

 
     


 

so that  

2 2
2 2

2 2

2 2
2 2 2 2

2 2

1 1

1
0       where -      ...(6)

d R dR

R dr r dr r

d R dR
R

dr r dr r


 


   

 
     

 

 
      

 

 

with solution of (3) as 

2 2

( ) h tT t ae   

solution of (4) as 

     cos sinZ z b z c z    

solution of (5) as 

     cos sine f      

The equation (6) is Modified Bessel’s Equation and the solution is 

    ( )        for fractional R r AJ r BJ r      

and 

   ( )        for integral R r AJ r BY r      
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where 

 

 

 

2

0

1
2

( )       ,     where ( 1) ( 1)( 2)...( )
2 1

( ) 1 ( )

r
r

n

n r

r r

n

n n

x

x
J x n n n n r

n

J x J x







 
  

         
 

  

  

and 

21

0

2 1 2
( ) log ( )

2

n pn

n n

p

x n p
Y x J x

p x


 





   
     

   
  

Thus, the solution of Heat equation is  

           
2 2

, ,

        , , , cos sin cos sin ( )

                                                                                                                     

h tu r z t ae b c e z f z AJ r BJ r

 
  

      


            

           
2 2

, ,

               for fractional ,  

and  , , , cos sin cos sin ( )  

                                                                                       

h tu r a t ae b c e z f z AJ r BY r

 
  



                   

                                        for integral .

Corollary:  In 2-dimesnion, the cylindrical heat Equation is 

2 2

2 2 2 2

1 1 1
                

u u u u

r r r r h t

   
  

   
 

and the solution of Heat equation is  

       

       

2 2

2 2

,

,

        , , cos sin ( )  for fractional ,  

and  , , cos sin ( )  for integral .

h t

h t

u r t ae b c AJ r BJ r

u r t ae b c AJ r BY r



 
 



 
 

     

     







       

       




 

1.5.3 Solution of Heat Equation in Spherical Co-ordinates  

In spherical polar co-ordinates, it has the form  

2 2

2 2 2 2 2 2

2 1 1 1
sin           ...(1)

sin sin

u u u u u

r r r r r h t


    

      
    

      
 

Assuming ( , , , ) ( ) ( ) ( ) ( )u r t R r T t      , equation (1) becomes 

2 2

2 2 2 2 2 2

2 2 2

2

2 2
2 2

2 2

1 2 1 1 1
sin

sin sin

1
Let   0           ...(2)

1
    =0                                    ...(3)

     

d R dR d d d dT

R dr Rr dr r d d r d h dt

dT dT
h T

h T dT dt

d d
m m

d d


    

 

 

   
     

   

    

 
    


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with solution given by 

2 2

( )

( )

h t

im

T t a

b

e

e











 
 

and 

2 2 2
2 2

2 2

1 2
sin ( 1) (say)

sin sin

      

d d m r d R r dR
r n n

d d R dr R dr
 

   

  
        

      

giving 

 
2

2 2 2

2

2

2

2 ( 1) 0                        ...(4)

1
sin ( 1) 0        ...(5)

sin sin

d R dR
r r r n n R

dr dr

d d m
n n

d d




   

    

  
       

    

 

Here (4), being homogeneous, if we put sr e and 
d

D
ds

 , reduces to  

 

( 1)

1

     ( 1) 2 ( 1) 0

or  ( )( ( 1)) 0

  

       

ns n s

n n

D D D n n R

D n D n R

R Ae Be

Ar Br

 

 

    

   

  

 

 

Putting cos   in (5), so that 

1
sin

sin

d d d d d d

d d d d d d




      

  
       

we have 

 
2

2

2

2 2
2

2 2

    1 ( 1) 0
1

or (1 ) 2 ( 1) 0
1

d d m
n n

d d

d d m
n n

d d


  

 
  

  
        

   

  
       

 

 

which is associated Legendre equation, then the solution is of the form 

(cos )   

and hence solution of given problem is  

2 21( , , , ) ( ) (cos )n n im

n

h tu r t Ar Br e e          

Hence, summing overall n and trying superposition, the general solution of (1) may be expressed as  
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2 2

1
, ,

( , , , ) ( ) (cos )n in
n n

h t

n m

B
u r t A r e

r
e 



   



   is required solution. 

1.5.4 Solution of Laplace Equation in Cartesian Co-ordinates 

In Cartesian co-ordinates, the Laplace equation has the form  

2 2 2

2 2 2
0              ...(1)

V V V

x y z

  
  

  
 

To solve it by the method of separation of variables, we have  

( , , ) ( ) ( ) ( )              ...(1)V x y z X x Y y Z z  

giving
2 2 2 2 2 2

2 2 2 2 2 2
YZ,      Z and          

V d X V d Y V d Z
X XY

x dx y dy z dz

  
  

  
 

so that (1) gives  

2 2
2 2

1 12 2

2 2
2 2

2 22 2

2 2
2 2 2 2 2

1 22 2

1
0            ...(2)

1
0                ...(3)

1
 0                 where                      ...(4)

d X d X
p p X

X dx dx

d Y d Y
p p Y

Y dy dy

d Z d Z
p p Z p p p

Z dz dz

    

    

     

 

The solutions of these equations are 

1 1

2 2

( ) cos sin

( ) cos sin

( ) pz pz

X x A p x B p x

Y y C p y D p y

Z z Ee Fe

 

 

 

 

The combined solution of (1) is  

1 1 2 2( , , ) ( cos sin )( cos sin ( )p

pz pzV x y z A p x B p x C p y D p y ce De     

Using the superposition, we have 

1 2

1 1 2 2

,

( , , ) ( cos sin )( cos sin ( )pz pz

p p

V x y z A p x B p x C p y D p y ce De   
 

Corollary: In 2-dimesnion, the Laplace equation has the form  

2 2

2 2
0              ...(1)

V V

x y

 
 

 
 

To solve it by the method of separation of variables, we have  

( , ) ( ) ( )              ...(2)V x y X x Y y  
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giving  
2 2 2 2

2 2 2 2
Y      and                  

V d X V d Y
X

x dx y dy

 
 

 
 

so that (1) gives  

2 2
2

2 2

1 1d X d Y
p

X dx Y dy
     

 Now, 

 

2
2

2

2
2

2

             0           ...(3)

and        0             ...(4)

d X
p X

dx

d Y
p Y

dy

 

 

 

The solutions of these equations are 

( ) cos sin

( ) py py

X x A px B px

Y y Ce De
 

 
 

The combined solution of (1) is  

( , ) ( cos sin )( )py py

pV x y A px B px ce De    

Using the superposition, we have 

( , ) [( cos sin )( )]py py

p

V x y A px B px ce De    

1.5.5 Solution of Three-Dimensional Laplace Equation in Cylindrical Co-ordinates 

In cylindrical co-ordinates, Laplace’s equation has the form 

2 2 2

2 2 2 2

1 1
0      ...(1)

V V V V

r r r r z

   
   

   
 

Assuming that ( , , ) ( ) ( ) ( )V r z R r Z z   , then (1) yields 

2 2 2

2 2 2 2

1 1 1 1
0       ...(2)

d R dR d d Z

R dr rR dr r d Z dz


   


 

Since the variables are separated, we can take 

2 2
2 2

2 2

2 2
2 2

2 2

1 1
           and    

0     and      0 

Z d

z z d

Z d
z

z d

 


 


 
  

 

 
     



 

yielding the general solutions as 
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( )    and   ( ) cos sinz zZ z C DAe Be         

Now, equation (2) reduces to 

2 2
2

2 2

1
0

d R dR
R

dr r dr r



 

    
 

 

Which is Bessel’s modified equation, having the solution 

( ) ( ) ( )R r EJ r FJ r    for fractional   

and      ( ) ( ) ( )R r EJ r FY r     for integral  . 

Hence, the combined solution is 

   
,

( , , ) cos sin ( ) ( )z zV r z Ae Be C D EJ r FJ r 

 
 

    

    , 

for fractional  . 

   
,

( , , ) cos sin ( ) ( )z zV r z Ae Be C D EJ r FY r 

 
 

        , 

for integral  . 

Corollary: 1. Taking constant A and B , the general solution can be written as  

( ) ( ) ( )R r A J r B Y r       

But ( )Y r  as 0r  , therefore if it is finite along the line 0r  , then 0B  , hence the solution is 

( , , ) ( ) z iV r z A J r e  

 
 

     

Trying the superposition, we can write the solution as: 

, 0

( , , ) ( ) ( cos sin ) ( cos sinz zV r z J r e A B e C D 

    
 

     






       

2. Solution of Laplace Equation in Two Dimension in Polar Co-ordinates 

The Laplace equation has the form: 

2 2

2 2 2

1 1
0            ...(1)

V V V

r r r r 

  
  

  
 

To solve it by the method of separation of variables, we take 

 , ( ) ( )                ...(2)V r R r    

giving 
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2 2

2 2

2 2

2 2

 ( )      ;     ( )        and

 ( )   

V dR V d R

r dr r dr

V d
R r

d

 

 

 
   

 

 




 

Substituting all these in the equation (1), we get  

2 2
2 2

2 2

1 1
 (say)

d R dR d
r r n

R dr dr d

  
    

 
 

so that we have 

2
2 2

2

2
2 2

2

1
 (say)

 0           ...(3)

d R dR
r r n

R dr dr

d R dR
r r n R

dr dr

 
  

 

   

 

which is homogeneous and hence on putting 

 ,    so that    logzr e z r  and    
d d

D r
dr dz

   

then the equation (3) reduces to 

 

2

2 2

( 1) 0

0

D D D n r

D n r

     

  
 

Its auxiliary equation is 

2 2 0

 

( )

          

nz nz

n n

D n

D n

R r Ae Be

Ar Br





 

  

  

 

 

Also, the equation for (1) is 

2
2

2

1
           ...(4)

d
n

d


 


 

It has the solution 

( ) cos sinC n D n      

The combined solution is 

    , cos sin                 ...(5)n

n nV r C n D nAr Br     

Also, for n=0, (3) and (4) becomes 
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2
2

2

2

2

       0              ...(6)

and  0                            ...(7)

d R dR
r r

dr dr

d

d

 




 

Having the solution of (6) and (7) as 

 
1 2

1 2

( ) logR r c c r

d d 

 

  
 

Thus, for n=0, the solution is 

  1 2 1 2( , ) logV r c c r d d     

Thus, the general solution is 

     1 2 1 2

1

( , ) log cos sinn n

n n n n

n

V r c c r d d A r B r C n D n   






         

1.5.5 Solution of Laplace Equation in Spherical Co-ordinates 

In spherical polar co-ordinates, it has the form  

2 2
2

2 2 2

1 1
2 sin 0          ...(1)

sin sin

V V V V
r r

r r


    

     
    

     
 

Assuming ( , , ) ( ) ( ) ( )V r R r      , equation (1) becomes 

2 2 2
2

2 2

2 2
2 2

2 2

2 1 1
sin

sin

1
  0        

r d R r dR d d d

R dr R dr d d d

d d

d d

 
   

 
 

   
      

   

 
      



 

with solution given by 

( ) iCe     

and 

2 2 2

2 2

2 1
sin ( 1) (say)

sin sin

      

r d R r dR d d
n n

R dr R dr d d




   

 
      

    

giving 

2
2

2

2

2

2 ( 1) 0                                    ...(2)

1
sin ( 1) 0        ...(3)

sin sin

d R dR
r r n n R

dr dr

d d
n n

d d




   

   

  
       

    
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Here (2), being homogeneous, if we put sr e and 
d

D
ds

 , reduces to  

 

( 1)

1

     ( 1) 2 ( 1) 0

or  ( )( ( 1)) 0

  

       

ns n s

n n

D D D n n R

D n D n R

R Ae Be

Ar Br

 

 

    

   

  

 

 

Putting cos   in (4), so that 

1
sin

sin

d d d d d d

d d d d d d




      

  
       

we have 

 
2

2

2

2 2
2

2 2

    1 ( 1) 0
1

or (1 ) 2 ( 1) 0
1

d d
n n

d d

d d
n n

d d




  


 

  

  
        

   

  
       

 

 

which is associated Legendre equation, then the solution is of the form 

(cos )   

and hence solution of given problem is  

1( , , ) ( ) (cos )n n i

nV r Ar Br e         

Hence, summing overall n and trying superposition, the general solution of (1) may be expressed as  

1
,

( , , ) ( ) (cos )n in
n n

n

B
V r A r e

r





   


     is required solution. 

1.5.7 Solution of Three-Dimensional Wave Equation in Cartesian Co-ordinates  

A partial differential equation of the form 

2
2 2

2

u
c u

t


 


 

is known as Wave equation, that is 

2 2 2 2
2

2 2 2 2

2 2 2 2

2 2 2 2 2

     

1
            ...(1)

u u u u
c

t x y z

u u u u

x y z c t

    
   

    

   
   

   

 

with the conditions 
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0  at  0,

0  at  y 0,

0  at  z 0,

u
x x a

x

u
y a

y

u
z a

z


  




  




  



 

and ( , , , ) 0 at 0u x y z t t   

To solve the problem, we shall use the method of separation of variables and assume that 

( , , , ) ( ) ( ) ( ) ( )u x y z t X x Y y Z z T t  

Now proceed as in previous examples to get 

1 2 3 1 2 3

2 2 231 2
1 2 3( , , , ) cos cos cos cosn n n n n n

nn n ct
u x y z t n n n

a a a a

  


 
 
 

    

Therefore, using the superposition, the general solution is 

1 2 3

1 2 3

2 2 231 2
1 2 3

, , 1

( , , , ) cos cos cos cosn n n

n n n

nn n ct
u x y z t x y z n n n

a a a a

  






 
   

 
  

Corollary: Wave equation in two-dimensional is  

2 2 2

2 2 2 2

1
                 ...(1)

u u u

x y c t

  
 

  
 

And the solution is given by  

 
1 2

1 2

2 21 2
1 2

, 1

( , , ) cos cos cosn n

n n

n n ct
u x y t x y n n

a a a

  






 
  

 
  

1.5.8 Solution of three-dimensional Wave equation in cylindrical co-ordinates 

  

2 2 2 2

2 2 2 2 2 2

1 1 1
            ...(1)

u u u u u

r r r r z c t

    
   

    
 

Let the solution is ( , , , ) ( ) ( ) ( ) ( )             ...(2)u r z t R x Z z T t    

Choosing the constant the separation of variable such that 

2 2
2 2 2

2 2 2

2 2
2 2

2 2

2 2
2 2

2 2

1
 = -p       p 0                                  ...(3)

1
0                                    ...(4)

1
0           ...(5)

d T d T
c T

c T dt dt

d d
q q

d d

d Z d Z
s s Z

Z dz dz

 

  

 
     



    
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The equation (1) becomes 

2 2
2 2

2 2

2 2
2

2 2

1
           

1
( ) 0  ...(6)

d u du q
s p

dr r dr r

d u du q
R

dr r dr r


    

 
    

 

 

where 
2 2 2s p    . Equation (6) is the modified Bessel’s equation of order q has a solution  

3 3( ) ( ) ( )q qR r A J r B J r    for  fractional q  

and   3 3( ) ( ) ( )q qR r A J r B Y r    for integral q . 

Now  

For a bounded solution, ( )qY r as 0r  , therefore if it is finite along the line 0r  , then 3 0B  . 

Thus, the general solution of equation(1) is  

    1 1 2 2 3 3

, ,

( , , , ) cos( ) sin( ) cos( ) sin( ) cos( ) sin( )q

p q s

u r z t CJ r A pct B pct A q B q A sz B sz        

 1.5.9 Solution of Three-dimensional Wave equation in Spherical co-ordinates 

In polar spherical co-ordinates the Wave equation is 

2 2 2 2

2 2 2 2 2 2 2 2 2

2 1 cot 1 1

sin

u u u u u u

r r r r r r c t



   

     
    

     
 

Assuming that the solution of (1) is 

( , , , ) ( ) ( ) ( ) ( )u r t R r T t       

Now proceed as in previous articles to get 

   
1 1

2 2
1 2 1 1

2 2, ,

( , , , ) (cos ) (cos ) ( ) ( )im ipct m m

n n
n np q s

u r t A e A e CP DP Er J pr Fr J pr   
 

  

 
   

 

 
   

 
 

 1.6 

Method of separation of variables to solve B.V.P. associated with motion of a vibrating string 

1.6.1 Solution of the problem of vibrating string with zero initial velocity and with initial 

displacement  

Let us consider an elastic string of length L , fastened at its ends on the x-axis and assume that it vibrates 

in the xy plane. Initially the string is released from the rest and we want to find out the expression for 

displacement function ( , ).y x t  The B.V.P. modeling the motion of string is  
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   

       

     

   

2 2
2

2 2
0 , 0 ... 1

0, , 0 0 ... 2

,0 , (0 )                                ... 3

( ,0) 0, 0                                ... 4

y y
a x L t

t x

y t y L t t

y x f x x L

y
x x L

t

 
   

 

  

  


  



  

Here, it is assumed that  f x  is the initial displacement of the string before release and initial velocity is 

zero. We find the solution of equation (1) by separation of variables. For this, we set      ,y x t X x T t  

and using this, we get 

2

2

'' ''
'' ''

X T
XT a X T or

X a T
    

Since the left side of this equation is a function of x only and right hand side is a function of t  only where 

x  and t  are independent, both must equal to some constant. Let the constant of separation is  . The 

above equation has become 

 2'' 0; '' 0 ... 5X X T a T       

Since (0, ) (0) ( ) 0y t X T t    

From here we conclude that (0) 0X  . This assumes that ( )T t  is non-zero for some t . Otherwise 0T   is 

zero for all time and we get the trivial solution, i.e., string would not move and it is possible only when 

( ) 0f x   means string is not displaced.  

Similarly ( , ) ( ) ( ) 0y L t X L T t  . Implies that ( ) 0X L  . 

The problem for X  is 

'' 0

(0) 0 ( )

X X

X X L

 

 
  

We have solved such types of problems earlier and the solution is  

( ) sinn n

n x
X x A

L

 
  

 
  with eigen values 

2 2

2

n

L


   for 1,2,3...,n   

Now the problem of ( )T t  is  

2 2

2
'' 0

n
T T

L


   

With the condition 
( ,0)

0 ( ) '(0) 0 '(0) 0.
y x

X x T T
t


    


 Otherwise the solution becomes trivial. 

Thus the general solution is  
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( ) cos sinn n n

n at n at
T t C D

L L

    
    

   
  

By applying the condition '(0) 0T  , we get 0nD  . Hence for fixed n  , the solution for 

( ) cosn n

n at
T t C

L

 
  

 
 for 1,2,3...n    

Now, for a fixed n , the solution of equation (1) is  

( , ) sin cosn n n n n

n x n at
y x t B where B A C

L L

    
    

   
  

Using the superposition, we obtain 

1 1

( , ) ( , ) sin cosn n

n n

n x n at
y x t y x t B

L L

  

 

   
     

   
    

Now, using the condition (3), we have  

1

( ,0) ( ) sinn

n

n x
y x f x B

L





 
   

 
   

Which is Fourier sine series and the value of constant coefficient nB  is 
0

2
( )sin

L n
f d

L L


 

 
 
 

     

Thus, we have 

0
1 1

2
( , ) ( , ) ( )sin sin cos

L

n

n n

n n x n at
y x t y x t f d

L L L L

  
 

 

 

      
        

      
    

Corollary:   In the above problem, if ( )f x  is replaced by 

  

, 0
2

( )

,
2

L
x x

f x
L

L x x L


 

 
   


  

The coefficient  

2

0
2

2 2

2
sin ( )sin

4
sin

2

L
L

Ln

n n
B d L d

L L L

L n

n

 
   





    
      

    

 
  

 

 
  

Thus the solution becomes 
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2 2
1

4 1
( , ) sin sin cos

2n

L n n x n at
y x t

n L L

  







     
      

     
   

Since sin 0
2

n 
 

 
 if n is even and    

1
sin 2 1 1

2

k
k

  
   

 
  if n is odd positive integer. The solution 

is  

 

 

1

22
1

14
( , ) sin sin cos

22 1

k

n

L n n x n at
y x t

L Ln

  








      
      

     
  

1.6.2 Solution of the Problem of Vibrating String with Initial Velocity and Zero Initial Displacement  

The B.V.P is  

   

       

   

   

2 2
2

2 2
0 , 0 ... 1

0, , 0 0 ... 2

,0 0, (0 ) ... 3

( ,0) ( ), 0 ... 4

y y
a x L t

t x

y t y L t t

y x x L

y
x g x x L

t

 
   

 

  

  


  



 

Similarly to earlier article, the solution for X  is  

( ) sinn n

n x
X x A

L

 
  

 
  with eigen values 

2 2

2

n

L


   for 1,2,3...,n   

 The solution for T  is   

    ( ) cos sinn n n

n at n at
T t C D

L L

    
    

   
 

And applying the condition (3), we have  

 ( ,0) ( ) (0) 0 (0) 0y x X x T T      

This implies 0nC   and the solution for T is 
1

( ) sinn n

n

n at
T t D

L





 
  

 
   

Therefore, the general solution is  

  
1 1

( , ) ( , ) sin sinn n n n n

n n

n x n at
y x t y x t B where A D B

L L

  

 

   
     

   
  … (5) 

Now, using condition (4), we have 
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1

( ,0) ( )

( ,0) ( ) sinn

n

y
x g x

t

y n a n x
x g x B

t L L

 








    
     

    


  

Which is a Fourier sine series for ( )g x , the value of coefficient nB  is  

 
0

2
( )sin

L

n

n
B f d

n a L


 



  
   

  
  

0
1

2
( , ) ( )sin sin sin

L

n

n n x n at
y x t f d

n a L L L

  
 







      
        

      
    

 

Example: Solve the following B.V.P 

 

   

       

   

 

2 2
2

2 2
0 , 0 ... 1

0, , 0 0 ... 2

,0 0, (0 ) ... 3

,0
4

( ,0) ... 4

0 ,
4

y y
a x L t

t x

y t y L t t

y x x L

L
x x

y
x

Lt
x L

 
   

 

  

  


  

 
   



 

1.6.3 The solution of the String Problem with Initial Velocity and with Displacement 

Consider a string with both initial displacement ( )f x  and initial velocity ( )g x . To solve this problem, we 

firstly, formulate two separate problems, the first with initial displacement ( )f x and zero initial velocity, 

and the second with zero initial displacement and initial velocity ( )g x .  In earlier article, we solved the 

problem of string with zero initial velocity and with displacement and initial velocity and with zero 

displacement. Let 1( , )y x t   be the solution of the first problem, and 2 ( , )y x t  the solution of the second. 

Now let 1 2( , ) ( , ) ( , ).y x t y x t y x t   Then y  satisfies the Wave equation and the boundary conditions. 

1.7  Solution of Wave equation for Semi-infinite and Infinite Strings 

1.7.1 Wave Motion for a Semi-infinite String 

Let us consider an elastic string which is fixed at 0x   and stretched from 0 to  . The B.V.P. 

for the motion of semi-infinite string is  
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   

     

   

   

2 2
2

2 2
0, 0 ... 1

0, 0 0 ... 2

,0 ( ), ( 0) ... 3

( ,0) ( ), 0 ... 4

y y
a x t

t x

y t t

y x f x x

y
x g x x

t

 
  

 

 

 


 



 

Here, this the problem of vibrating string with initial velocity and displacement. So we will separate the 

problem in two parts: (i) zero initial velocity and with displacement (ii) with initial velocity and zero 

displacement. 

(i) Zero initial velocity 

For this case ( ) 0g x  . For a bounded solution, we firstly set ( , ) ( ) ( )y x t X x T t .  

Using this in equation, we get  

   
2

'' ''X T

X a T
                           … (5) 

In equation (5), the left side is a function of x  only while right side is function of t . So each side must be 

equal to some constant, let that separation of constant is  . The equation (5) becomes 

  
2

'' 0

'' 0

X X

T a T





 

 
                                                 … (6) 

And the condition (2) and (4) becomes 

          

 

 

(0, ) (0) ( ) 0 (0) 0 ... 7

( ,0) ( ) '(0) 0 '(0) 0 ... 8

y t X T t X

y
x X x T T

t

   


   



        

Now we will discuss the cases for different values of  . 

Case   1: If 0   

Then '' 0 ( )X X x Ax     

Which is unbounded solution on the given domain, unless 0A  . Thus, for this case we have a trivial 

solution.  

Case  2: if 0  , let 
2p    with 0p   .  

Then 
2'' 0X p X   with the solution 

( ) px pxX x Ae Be 
  

Now,          
 

(0) 0 0

( ) px px

X A B A B

X x A e e

      

  
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which is unbounded solution for 0p   unless 0A  . Thus ( ) 0X x  , again we get a trivial solution. 

Case  3: if 0  , let 
2p   with 0p   .  

Then 
2'' 0X p X   with the solution 

 ( ) cos sinX x A px B px    

Now,           
(0) 0 0

( ) sin

X C

X x D px

  

 
 

Thus for each 0p  , 
2p   is an eigen value and ( ) sinp pX x D px . 

Now the problem for T is  

 
2 2'' 0T a p T   with the solution 

 ( ) cos( ) sin( )T t C pat D pat    

Now,          
'(0) 0 0 0

( ) cos( )

T paD D

T t C pat

    


  

Thus for  0, ( ) cosp pp T t C pat    

Therefore, for this case 

    ( , ) sin cosp p p p py x t E px pat where E A C    

Using the superposition, we have 

     
0

( , ) sin cospy x t E px pat dp



    

Also it is given  
0

( ,0) ( ) sin ( )py x f x E px dp f x



     

 So    
0

2
( )sinpE f p d  





    

(i)  Zero initial displacement  

For this case ( ) 0f x  . For a bounded solution, we firstly set ( , ) ( ) ( )y x t X x T t .  

Using this in equation, we get  

   
2

'' ''X T

X a T
                          

In equation, the left side is a function of x  only while right side is function of t . So each side must be 

equal to some constant, let that separation of constant is  . The equation becomes 
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2

'' 0

'' 0

X X

T a T





 

 
                                    

And the condition   (2) and (4) becomes 

  
(0, ) (0) ( ) 0 (0) 0

( ,0) ( ) (0) 0 (0) 0

y t X T t X

y x X x T T

   

   
       

Now we will discuss the cases for different values of  . 

Case   1: If 0   

Then '' 0 ( )X X x Ax     

Which is unbounded solution on the given domain, unless 0A  . Thus, for this case we have a trivial 

solution.  

Case 2: if 0  , let 
2p    with 0p   .  

Then 
2'' 0X p X   with the solution 

( ) px pxX x Ae Be    

Now,          
 

(0) 0 0

( ) px px

X A B A B

X x A e e

      

  
   

Which is unbounded solution for 0p   unless 0A  . Thus ( ) 0X x  , again we get a trivial solution. 

Case  3: if 0  , let 
2p   with 0p   .  

Then 
2'' 0X p X   with the solution 

( ) cos sinX x A px B px    

Now,          
(0) 0 0

( ) sin

X C

X x D px

  

 
 

Thus for each 0p  , 
2p   is an eigen value and ( ) sinp pX x D px . 

Now the problem for T is  

 
2 2'' 0T a p T   with the solution 

. ( ) cos( ) sin( )T t C pat D pat  .  

Now,          
(0) 0 0 0

( ) sin( )

T paC C

T t D pat

    


  

Thus for  0, ( ) sinp pp T t D pat    
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Therefore, for this case 

    ( , ) sin sinp p p p py x t E px pat where E A D    

Using the superposition, we have 

    
0

( , ) sin sinpy x t E px pat dp



    

Also it is given  

 

   

0

0

( ,0)
( ) sin ( )

2
sin

p

p

y x
g x paE px dp g x

t

E f p d
pa

  







  









  

Thus, the general solution is 

      
0 0

2 1
( , ) sin sin( )cosy x t f p d px pat dp

a p
  



  
  

 
   

 

1.7.2 Wave Motion for a Infinite String 

Let us consider an elastic string which stretched over a real line. The B.V.P. for the motion of infinite 

string is  

   

   

   

2 2
2

2 2
, 0 ... 1

,0 ( ), ( ) ... 2

( ,0)
( ), ... 3

y y
a x t

t x

y x f x x

y x
g x x

t

 
     

 

    


    



 

Similar to previous article, we will separate the problem in two parts: (i) zero initial velocity and with 

displacement (ii) with initial velocity and zero displacement. 

Case (i) Zero initial velocity 

For this case ( ) 0g x  . For a bounded solution, we firstly set ( , ) ( ) ( )y x t X x T t . Using this in equation, 

we get  

   
2

'' ''X T

X a T
                          

In equation, the left side is a function of x  only while right side is function of t . So each side must be 

equal to some constant, let that separation of constant is  . The equation becomes 

  
2

'' 0

'' 0

X X

T a T





 

 
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and the condition becomes 

  ( ,0) ( ) '(0) 0 '(0) 0
y

x X x T T
t


   


        

Now we will discuss the cases for different values of  . 

Case 1: If 0   

Then '' 0 ( )X X x Ax B      

Which is unbounded solution on the given domain, unless 0A  . Thus solution is ( )X x B  for the eigen 

value.  

Case 2: if 0  , let 
2p    with 0p   . 

Then 
2'' 0X p X   with the solution 

 ( ) px pxX x Ae Be    

Since 0p  ,  the first term in right hand side pxAe  is unbounded in the domain [0, )  and the second 

term pxBe is unbounded in the region ( ,0)  Therefore, for a bounded solution, we have to assume that

0 0A and B  . Therefore ( ) 0X x    

Case  3: if 0  , let 
2p   with 0p   .  

Then 
2'' 0X p X   with the solution 

 ( ) cos sinX x A px B px    

The function ( )X x  is always bounded for every 0p   an so, we have 

    ( ) cos sinp p pX x A px B px    

Now the problem for T is  

2'' 0T a T   and  

( ,0) ( ) '(0) 0 '(0) 0
y

x X x T T
t


   


  

If 0,   then we have 

( )

'(0) 0 0

( )

T t Ct D

and T C

T t D

 

  

 

   

Is a solution for T . On the other hand, if 
2 , 0p p   , then the equation 

2 2'' 0T a p T   has the solution  

       cos sinT t E pat F pat          
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But    
 

'(0) 0 0 0

( ) cosp p

T paF F

T t E pat

    

 
  

Therefore, for this case 

     ( , ) cos sin cosp p p p p p p p py x t a px b px pat where a A E and b B E        

Using the superposition, we have 

      ( , ) cos sin cosp py x t a px b px pat dp





      

Also it is given      ( ,0) ( ) cos sin cosp py x f x a px b px pat dp





       

Where    

   

   

1
cos

1
sin

p

p

a f p dp

b f p dp

 


 












 



  

 So  
0

2
( )sinpE f p d  





    

(ii) Zero initial displacement  

For this case ( ) 0f x  .  Similar to previous case, the eigen function for  X is   

   ( ) cos sp p pX x A px A in px   with eigen values 
2p   with 0p  . And the solution for T  

    ( ) cos sinp p pT t E pat F pat    

The problem is same as zero initial velocity except the condition ( ,0) 0y x  .This implies

( ) (0) 0 (0) 0X x T T   . We have 0pE  . The solution becomes  ( ) sinp pT t F pat    

Therefore, for this case, the solution is  

     ( , ) cos s sinp p p p p p p p py x t a px b in px pat where a A F and b B F        

Using the superposition, we have 

     ( , ) cos s sinp py x t a px b in px pat dp





      

Also it is given      
( ,0)

( ) cos s sin ( )p p

y x
g x pa a px b in px pat dp g x

t






       . 
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The coefficient 
pa  and 

pb  are given by  

   

   

1
cos

1
sin

p

p

a g p d
ap

b g p d
ap

  


  


















 

Problems:  

 1. Find the solution of B.V.P  

  

 

     

 

 

2 2
2

2 2
0 , 0

0, , 0 0

,0
2

,0

,
2

( ,0) cos 0

y y
a x L t

t x

y t y L t t

L
x x

y x
L

L x x L

y x
x x x L

t L



 
   

 

  


 

 
   


   
    

   

 

2. Find the solution of B.V.P.  

 

 

 

 

2 2
2

2 2
0, 0

(0, ) 0 0

(1 ) ,0 1
,0

0 , 1

( ,0) 0 0

y y
a x t

t x

y t t

x x x
y x

x

y
x x

t

 
  

 

 

  
 




 



 

Some other problems 

The Heat Equation in an Infinite Cylinder 

Suppose we want the temperature distribution in a solid, infinitely long, homogeneous circular cylinder 

of radius R. Let the z-axis be along the axis of the cylinder. In cylindrical co-ordinates the Heat equation 

is: 

2 2 2
2 2 2

2 2 2 2

1 1u u u u u
a u a

t r r r r z

     
      

     
 

We assume that the temperature at any point in the cylinder depends only on the time t and the distance r 

from the z-axis, the axis of the cylinder. This means that 0
u u

z

 
 

 
 and the Heat equation is 
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1( , , ) ( ) (cos )n n i

nV r Ar Br e         

2
2

2

1u u u
a

t r r r

   
  

   
 

Here u is a function of r and t only. The boundary condition we will consider is  

( , ) 0u R t   

for 0t  . This means that the outer surface is kept at temperature zero. 

Now as in previous articles (left as an exercise for readers) we obtain, 

2 2

2

0

02 2
1 1 0

2
( , ) ( )

( )

n

n
a z t R

nR

n n

z r
J

zR
u r t e f J d

R J z R


  





 
 

    
 

   

Solve the following exercise: 

Exercise: A homogeneous circular cylinder of radius 2 and semi-infinite length has its base, which is 

sitting on the plane 0z  , maintained at a constant positive temperature K. The lateral surface is kept at 

temperature zero. Determine the steady-state temperature of the cylinder if it has a thermal diffusivity of 
2a , assuming that the temperature at any point depends only on the height z  above the base and the 

distance   from the axis of the cylinder. 

The Heat Equation in a Solid Sphere: 

Consider a solid sphere of radius R centered at the origin. We want to solve for the steady-state temperature 

distribution, given the temperature at all times on the surface 

Solution: Here, it is natural to use spherical co-ordinates. We assume that temperature depends only on 

distance from the origin R. The angle of declination from the z-axis  , with 0
u







, Laplace equation in 

spherical co-ordinates is 

2 2

2 2 2 2

2 1 cot
0                               ...(1)

for (0 ,0 )

u u u u

r r r r r

r R



 

 

   
   

   

   

 

The temperature is given on the surface 

( , ) ( )   (0 )    ...(2)u R f       

To solve this BVP, we set 

( , ) ( ) ( )    ...(3)u r R r    

(Remaining solution is left for readers as an exercise). 



 

  

CHAPTER-2 

LAPLACE EQUATION AND ITS SOLUTION 

Structure 

2.1  Introduction 

2.2  Transport Equation 

2.3  Non-Homogeneous Equations 

2.4  Laplace Equation and its Fundamental Solution. 

2.5  Mean-Value Formula 

2.6  Properties of Harmonic Functions 

2.7  Green Function 

2.1 Introduction 

 To model the physical problems, the partial differential equations (PDEs) are the common method. PDEs 

can be used to describe a wide variety of phenomena such as sound, heat, diffusion, electrostatics, 

electrodynamics, fluid dynamics, elasticity, gravitation and quantum mechanics, etc. In this chapter, we 

will discuss about different types of the partial differential equations, their classifications and the classical 

and weak solutions, etc. 

Partial Differential Equation  

A partial differential equation (PDE) is differential equation that contain an unknown function and its 

partial derivate with respect to two or more variables i.e., let U be an open subset of .nR  An expression of 

the form  

-1( ( ), ( ),..., ( ), ( ), ) 0 ( )k kF D u x D u x Du x u x x x U       …(1) 

is called a kth-order partial differential equation, where  

1

: ...
k kn n nF R R R R U R



      is given and :u U R  is the unknown. 

Example:  The equation 0t xu u   is a partial differential equation, the unknown function is u  and 

independent variables are and .x t  

2.1.1 Classifications of Partial Differential Equations 

Partial Differential Equations can be classified into four types 

(a) Linear (b) Semi-linear (c) Quasi-linear (d) Non-linear. 
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(a)  Linear Partial Differential Equation:  A Partial Differential Equation (1) is said to linear PDE if it 

has the form 

( ) ( )a x D u f x

k











            … (2) 

for a given function  anda k f      Here, it is clear that the coefficients of derivate are a function of x 

only. The above equation is said to be homogeneous if  f=0. 

For example: 0t xu u   is a transport equation which is of first order, linear and homogeneous. 

Some famous linear PDE are 

1. Laplace equation    0 or 0xx

i

u u     

2. Linear Transport Equation     

 
1 2

0,

, ...
n

n

t

x x x

u b u b R

Du u u u

   



  

3. Heat (Diffusion) Equation         0tu u    

4. Wave equation                     0ttu u    

(b)  Semi-linear Partial Differential Equation: A Partial Differential Equation (1) is said to semi-linear 

PDE if it has the form 

 1

0( ) ,..., , , 0,a x D u a D u Du u x

k

 





 



          … (3) 

Here, coefficient of highest order derivative is a function of x only. 

For example: ( ) 0xx x ta x u u u  . 

(c) Quasi-linear Partial Differential Equation: A Partial Differential Equation (1) is said to quasi PDE  

if it has the form 

 1 1

0( ,..., , , ) ,..., , , 0,a D u Du u x D u a D u Du u x

k

  





  



     … (4) 

Here, coefficient of highest order derivative are lower order derivative and function of x but not same 

order derivatives. 

For example: 0u u u u
x xx x t

   

(d) Nonlinear Partial Differential Equation: A Partial Differential Equation is non-linear in the highest 

order derivatives. 

For example: 
2 0u u u u

xx x t
   
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2.1.2 System of Partial Differential Equations 

An expression of the form is said to be system of partial differential equations if it is represented by  

-1( ( ), ( ),... ( ), ( ), ) 0 ( )k kF D u x D u x Du x u x x x U   

is called a kth order system of partial differential equations in u where  

1
: ...

k kmn mn mn m mF R R R R U R


        

is given and  1 2, ,..., is the unknown function such that :m mu u u u u U R    

For example:  

   1 2 30 where , ,u divu u u u u         

Note: The classifications of system of partial differential equations are same as in case of a partial 

differential equations. 

2.1.3 Solution of PDE 

 An expression u which satisfies the given PDE (1) is called a solution of the Partial Differential Equation.   

Well posed problem: A given problem in Partial Differential Equation is well posed (Hadaward) if it 

satisfies 

(i) existence 

(ii) uniqueness 

(iii)  continuously depend on the data of given problem. 

Classical Solution: If a solution of a given problem satisfies the above three conditions i.e., the solution 

of kth order partial differential equation exists, is unique and is at least k times differentiable, then the 

solution is called classical solution. Solutions of Wave equation, Lalpace, and Heat equation etc., are 

classical solutions. 

Weak Solution: If a solution of a given problem exists and is unique but does not satisfy the conditions 

of differentiability, such solution is called weak solution. 

For Example:  The gas conservation equation 

  0t xu F u 
 

models a shock wave in particular situation. So solutions exists, is unique, but not continuous. Such 

solution is known as weak solution. 

Note: There are several physical phenomenon in which the problem has a unique solution, but does not 

satisfy the condition of differentiability. In such cases, we cannot claim that we are not able to find the 

solution rather such solutions are called weak solutions 

2.2 Transport Equation   
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Homogeneous Transport Equation 

The simplest partial differential equation out of four important equations is the Transport equation with 

constant coefficient  

  . 0tu b Du             … (1)  

in  0,nR   , where 1 2 3( , , ..., )nb b b b b  is a fixed vector in nR  and  : 0,nu R R    is the unknown 

function u=u(x, t ).  Here  1,...,
n

nx x x R   denotes a typical point in space and 0t   is the time variable. 

Theorem: Initial Value Problem 

Consider the homogeneous transport equation 

  . 0tu b Du          in   0,nR                                 ….(1) 

 { 0}nu g on R t                                         ….(2) 

where and :n nb R g R R   is known and  
1
,...,

nx x xDu D u u u   for the gradient of u with respect to 

the spatial variables x . The problem is to compute ( , )u x t . 

Solution: 

Let ( , )x t  be any point in the [0, ).nR    To solve equation (1) , we observe the L.H.S. of equation (1) 

carefully, we find that it denotes the dot product of  
1 1,..., ,

nx xu u u  with  1,..., ,1nb b  .  So L.H.S. of equation 

(1) tells that the derivative of u in the direction of  ,1b  is zero in 1nR   dimensional space. So, the line 

through ( , )x t  in the direction of ( ,1)b  is 

 
( )

,
( )

x s x sb
s R

t s t s

  


  
          … (3) 

 This line hits the plane : { 0}nR t     at the point ( ,0)x tb  when s t  .  

Define a parametric equation of line in the direction  ,1b  is 

                     ,z s u x sb t s                … (4) 

where s R  is the parameter and :z R R .  

Then, differentiating (4) w.r.t. s, we get 

      
     , . ,

0

tz s Du x sb t s b u x sb t s     


               (using (1)) 

 z s  is a constant function of s on the line (3).  
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   u is constant on the line (4) through  ,x t  with the direction   1,1 nb R  . 

and ( ,0) ( )u x tb g x tb     

By virtue of given initial condition (2), we deduce that  

( , ) ( )u x t g x tb           … (5) for  and t 0.nx R    

Hence, if we know the value of u at any point on each such line, we know its value everywhere in

 0,nR    and it is given by equation (5). 

Conversely, if
1g C , then  ,u u x t  defined by (5) is indeed a solution of given initial value problem. 

From (5), we find that 

               .tu b D x tb      

and 

         Du=Dg 

Hence . . . 0tu b Du b Dg b Dg      for (x ,t) in  0,nR   and for t=0    ,0u x g x  on  0nR t   

Remark: If g is not 1C , then there is obviously no 1C solution of (1). But even in this case formula (5) 

certainly provides a strong and in fact the only reasonable, candidate for a solution. We may thus 

informally declare     , , 0nu x t g x tb x R t     to be a weak solution of given initial value problem 

even should g not be 1C . This all makes sense even if g and thus u are discontinuous.  Such a notion, that 

a non-smooth or even discontinuous function may sometimes solve a PDE will come up again later when 

we study nonlinear transport phenomenon. 

2.3 Non-homogenous Problem 

Theorem: Consider the non–homogeneous initial value problem of transport equation 

           
   . , 0, ...(1)

on { 0} ...(2)

n

t

n

u b Du f x t in R

u g R t

   

  
          

where , : ,  f : R [0, )  n n nb R g R R R     is known and  
1
,...,

nx x xDu D u u u   for the gradient of 

u with respect to the spatial variables x . Solve the equation for u=u(x,t) with initial condition (2). 

Solution:  Fix a point   1, nx t R  , as discussed before, the equation of line passing through  ,x t  in the 

direction of  ,1b  is given by    ,z s u x sb t s   , where s is the parameter. 

Differentiating this w. r. t. s  

            ,z s f x sb t s         (using (1)) 

Integrating w. r. t. s from –t to 0 
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   
0 0

,
t t

z s ds f x sb t s ds
 

     

     
0

0 ,
t

z z t f x sb t s ds


      

Substitute t+s= , ds=d  

      
0

0 ,

t

z z t f x b t d        

      
0

, ,0 ,

t

u x t u x bt f x b s t s ds             ( replacing by s  ) 

      
0

, ,0 ,

t

u x t u x bt f x b s t s ds      

      
0

, ,

t

u x t g x bt f x b x t s ds           , 0nx R t   

It is the required solution of initial value problem for non-homogeneous transport equation. 

2.4   Laplace’s Equation and its Fundamental Solution 

We get the Laplace’s equation in several physical phenomenon such as irrotational flow of incompressible 

fluid, diffusion problem etc.  Let nU R be a open set, x R and the unknown is :u U R ,  u u x

then, the Laplace’s equation is defined as 

                                                           0u                 … (1) 

and Poisson’s equation 

                                                       u f               

where the function :f U R is given. 

and also remember that the Laplacian of u is
1

i i

n

x x

i

u u


  . 

Definition: Harmonic function 

 A 2C  function 𝑢 satisfying the Laplace’s equation 0u   is called a harmonic function. 

Theorem: Find the fundamental solution of the Laplace’s equation (1). 

Solution:  Probably, it is to be noted that the Laplace equation is invariant under rotation. So we attempt 

to find a solution of Laplace’s equation (1) in nU R , having the form (radial solution) 

                   u x v r ,            …(2) 



72 Partial Differential Equations 

where  
1

2 2 2

1 ... nr x x x    and v is to be selected (if possible) so that 0u   holds. 

We note that  

                  
1

2 2 2

1

1
... 2

2

i
n i

i

xr
x x x

x r


   


      0x   

for i=1,2,…,n. 

Thus, we have 

                  ' ,
i

i
x

x
u v r

r
   

and    

2 2
1

" '
2 3

x x
i iu v r v r

x x rr ri i

 
   
 
 
 

 

 for i=1,…,n.  

So       

                        
2 2

2
1 1 1

1 1
''( ) '( ) " '

i i

n n n
i i

x x

i i i

x x n
u u v r v r v r v r

r r r r  

      
          

     
     

Hence 0u   if and only if 

                      
1

" ' 0
n

v v
r


                  

If ' 0v  , we deduce 

             
" 1

log ' '
'

v n
v

v r


  ,  

Integrating w. r. t. r, 

                        log ' 1 log logv n r a     

where log a  is a constant. 

Now,              
1

'
n

a
v

r 
   

Again integrating 

                   
 

 

log 2

3
2

a r b n

v r a
b n

nr

  


 
  
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where a and b are constants. 

Therefore, if r >0, the solution of Laplace’s equation is 

                    

 

 2

log 2

3
n

a x b n

au x
b n

x


  


   



 

Without loss of generality, we take b=0. To find b, we normalize the solution i.e. 

                          1u x dx
nR

  

So, the solution is  

                     

 

   
 2

1
log 2

2

1
3

2
n

x n

u x

n
n n n x







 


 
 



                          … (3) 

for each , 0nx R x   and ( )n  is the volume of the unit ball in .nR   

We denote this solution by  x  and  

                       

 

   
 2

1
log 2

2

1
3

2
n

x n

x

n
n n n x










  

 


               … (4) 

defined for , 0nx R x  , is the fundamental solution of Laplace’s equation. 

Remarks: 1. We conclude that the solution of Laplace’s equation 0u  ,  x  is harmonic for 0x  . So 

the mapping ( )x x , 0x   is harmonic. 

2. Shifting the origin to a new point y, the Laplace’s equation remains unchanged. So  x y   is harmonic 

for x y . If : nf R R  is harmonic, then    x y f y   is harmonic for each
ny R  and x y . 

3. If we take the sum of all different points y over nR , then 

                        
nR

x y f y dy     is harmonic. 

Since      
n

x

R

u x x y f y dy      

is not valid near the singularity x y . 
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We must proceed more carefully in calculating .u  

2.4.1 Fundamental Solution of Poission’s Equation 

To solve the Poission equation is , where , : ,n nu f x U R f R R U       is an open set and unknown 

function is : .u U R   

Solution: We know that ( ) ( ) forx x y f y x y    is harmonic for each point ,ny R

and so is the sum of finitely many such expression constructed for different points yConsider the 

convolution 

  ( ) ( ) ( )
nR

u x x y f y dy            … (5) 

Form equations (4) and (5), we have 

             

 

   
 2

1
log( ) ( ) 2

2
( )

1 ( )
3

2

n

n

R

n

R

x y f y dy n

u x
f y

dy n
n n n x y



 


 


 
 
  




                …  (6) 

For simplicity, we assume that the function f used in Poission’s equation is twice continuously 

differentiable. Now, we show that ( )u x  defined by equation (5) satisfies 

(i) 
2 ( )nu C R   

(ii) in .nu f R     

Consequently, the function in (6) provided us with a formula for a solution of Poission’s equation.  

Proof of (i): 

Define u as, 

                         
nR

u x x y f y dy    

By change of variable x y z    

 ( ) ( ) ( ) ( ) ( )
n nR R

u x x f x z dz x f x y dy         

By definition .
ixu .is 

 

( ) ( ) ( ) ( )
( ) (*)

where 0 is a real number , (0,0,...,0,1,0,...,0) with 1 in the i  position.

n

i i

R

n th

i i

u x he u x f x he f x
y dy

h h

h e R e

    
   

 

  


  

Thus, on taking 0h   in equation (*), we have  
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2 2

( ) ( )
( ) (**)

for 1,2,3,...,

Similarly,

( ) ( )
( ) (***)

for , 1,2,...,

n

n

i iR

i j i jR

u x f x y
y dy

x x

i n

u x f x y
y dy

x x x x

i j n

   
   

  



    
   

     







  

As the expression on the right hand side of equation (***) is continuous in the variable x, we see that  

                
2 ( )nu C R   

This proves (i). 

Proof of (ii) 

  (ii) From part (i), we have 

                            
n

x

R

u x y f x y dy      

Since  y  is singular at 0y  , so we include it in small ball  0,B  , where 0   

Then, 

                            
 

   
 0, 0,n

x x

B R B

u x y f x y dy y f x y dy
 

           

                                   I J                                      …(7) 

where 

                          
 0,

x

B

I y f x y dy



                      …  (8) 

                          
 0,n

x

R B

J y f x y dy



                  …  (9) 

Now, 

                         
 0,

x

B

I y f x y dy



       

                             
 

 
 

2

0,

nL R
B

c D f y dy



                

                             
 

 

2

2

2log

3

nc

nc

 




 


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Now, 

                           
 0,n

x

R B

J y f x y dy



     

                                 
 0,n

y

R B

y f x y dy



                         , x y
x y

  
     

  
 

Integrating by parts 

                            
 

 
 

 
 0,0,n

y

BR B

f x y
J D y D f x y dy y ds y






 
     

   

where    denoting the inward pointing unit normal along  0,B  . 

                          J K L                                            

We take, 

                          
 

 
 0,B

f x y
L y ds y






 
 

  

                                
     

 0,

nL R

B

Df y ds y






   

                         
 

 

2log

3

nc
L

nc


 




 


       … (10) 

Now                      
 0,n

y

R B

K D y D f x y dy



        

Integrating by parts                                            

                               
 

 
   

 0,0,n BR B

y
K y f x y dy f x y ds y







    

   

                                   
 

   
 0,B

y
f x y ds y







  

                    (since   is harmonic) 
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 

 
 

1 2

2

1 1

, ,...,

1 1

( 2) ( )

( 2) 1 1

( 2) ( ) ( )

1
0

n

n

i i

i

n n

i

n

D y
y y y

Also
y y n n n y

y yn

n n n y yy n n y

y
y

n n y



 





 

   
   

   

  
  

   
 

  
 

 


 

           

 and                       
y y

y




 
         on           0,B   

So, 

                               
 

 
  1

1
.

n

y
D y

n n


   


  


         on  0,B    

Now, we have 

                               
 

   
 

1

0,

1
n

B

K f x y ds y
n n




  



                               

                          
 

 
,B x

K f y ds y f y



      as 0                                                 … (11) 

Combining equations (5) to (11) and letting 0  , we have 

                                    u x f x    

This completes the proof. Thus ( )u x  given by (5) is the solution of Poission’s equation. 

2.4.2 Some Important Properties (in Polar coordinates) 

(i)  
0 ( , )n x rR

fdx fds dr





     

(ii) 

0 0( , ) 0 ( , )

r

B x r B x r

fdx fds dr


 
  

 
 

     

(iii) 

0 0( , ) ( , )B x r B x r

d
fdx fds

dr


 
 

 
 
    
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2.5 Mean-value Theorem 

Theorem: Mean-value formulas for Laplace’s equation 

If u  is a harmonic function. Then 

                                        
   , ,B x r B x r

u x uds udy


                         …  (1) 

for each ball  ,B x r U . 

OR 

If u is harmonic function, prove that u equals to both the average of u over the sphere  ,B x r and the 

average of u over the entire ball  ,B x r  provided  ,B x r U . 

Proof:  (Proof of Part I) 

  Set                 
 ,

:
B x r

r u y ds y


                                           …  (2)         

Shifting the integral to unit ball, if z  is an arbitrary point of unit ball then 

                                  
 ,

:
B x r

r u x rz ds z


    

Then 

                                 
 0,1

' .
B

r Du x rz zds z


    

And consequently, using Green’s formulas, we have 

                                  
 ,

' .
B x r

y x
r Du y ds y

r



    

                                           
 ,

.
B x r

Du y ds y


  , where   is unit outward normal to  ,B x r . 

                                
 ,

'
B x r

u
r ds y





 

  

   1

( , )

1

( ) n

B x r

u y dy
n n r 

    

                                         
 ,B x r

r
u y dy

n
   = 0                                         0 ( , )u on B x r    

Hence   is constant and 
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                                    
 

 
0 0

,

lim lim
t t

B x t

r t u y ds y u x
 



                            …(3) 

From (2) and (3), we have 

                                    
 ,B x r

u x u y ds y


                                         …  (4) 

(Proof of Part II) 

Using coarea formula, we have 

                                
   , 0 ,

r

B x r B x t

udy uds dt


 
 
 
 

    

                                                  1

0

r

nu x n n t dt    

                                                   nu x n r  

                                 
   ,

1
n

B x r

u x udy
n r

        

                                              

 ,B x r

udy                                …  (5) 

From (4) and (5), we have 

                                    
   , ,

( )
B x r B x r

u x uds udy


    

Hence proved. 

Converse of Mean- value Theorem 

Theorem: If  2u C U  satisfies the mean value formula 

                                                      
 ,B x r

u x uds


   

for each ball  ,B x r U , then u  is harmonic. 

Proof: Suppose that u  is not harmonic, so 0u  . Therefore there exists a ball  ,B x r U  such that 

0u   within  ,B x r . 

But then for  , we know that 

                                                   
 ,

0 ' 0
B x r

r
r u y dy

n
      

which is a contradiction. Hence u  is harmonic in U . 
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2.6 Properties of Harmonic Functions 

Here, we present an interesting deduction about the harmonic function, all based upon the mean-value 

formula by assuming the following properties that nU R  is open and bounded. 

2.6.1 Strong Maximum Principle, Uniqueness 

Theorem: Let    2u C U C U   is harmonic within .U  

(i) Then           max maxu u
U U




 

(ii)  Furthermore, if U is connected and there exists a point 0x U such that 

                                 0 maxu x u
U

 , 

then u  is constant withinU . 

 Assertion (i) is the maximum principle for Laplace’s equation and (ii) is the strong maximum principle. 

Proof: (ii) Suppose there exist a point 0x U  such that 

   max
0

u x u M
U

                   …  (1) 

Then for  0 ,
0

r dist x U   ,  the mean value property implies 

                                      

 
0,

0

0

( )

( , )

( , )

0

1

( )

( )

B x r

n

B x r

n

B x r

M u x udy

udy
n r

M
dy

n r





 











 

                                                         M  

Equality holds only if u M within  0 ,B x r .  So we have,  u y M for all  0 ,y B x r . To show that 

this result holds for the set U . 

Consider the set 

                                       X x U u x M    

We prove that X is both open and closed. 

X is closed since if x  is the limit point of set X, then    a sequence  nx in X such that  nx x  
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Since u is continuous so     nu x u x . 

So                     u x M  

                  x X   

                 X  is closed. 

To show that X  is open, let x X , there exists a ball  ,B x r U  such that 

                                           
 ,B x r

u x udy   

So  ,x B x r X  . 

Hence X is open. 

But U  is connected. The only set which is both open and closed in U is itself .U So U X . 

Hence  u x M   x U  . So u   is constant in U . 

(i) Using above result, we have    0u y u x  for some y  and suppose 0x U . 

Since U is harmonic, so by mean value theorem, there exists a ball  0 ,B x r U such that 

                                              
 0

0

,B x r

u x uds y


   

                                             
 

   
 0

1

,

1
n

B x r

M u y ds y
n n r 



   

                                                    u y  

Maximum value is less than  u y , which is a contradiction. 

Hence 0x U . 

Remarks: 1. If U is connected and    2u C U C U  satisfies  

                                                          0u   in U  

                                                           u g  on U  

where 0g  . 

Then u is positive everywhere in U if g is positive somewhere on U . 

2. An important application of maximum modulus principle is establishing the uniqueness of solutions to 

certain boundary value problem for poission’s equation. 
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Theorem: (Uniqueness)  

Let  g C U  ,  f C U . Then there exists at most one solution    2u C U C U   of the boundary 

value problem 

                                                       u f   in U  

                                                             u g  on U       

Proof: Let u  and u  be two solutions of given boundary value problem, then 

                                                              u f   in U           

                                                                 u g  on U  

and 

                                                               u f  in U  

                                                                 u g  on U  

Let  w u u    

                                                                 0w   in U  

                                                                  0w   on U  

w  is harmonic in U and w  attains maximum value on boundary which is zero. If U  is connected 

then w  is constant. So 0w   in U  

Hence u u  in U . 

 

 

2.6.2 Regularity 

In this property, we prove that if 2u C is harmonic, then necessarilyu C . Thus harmonic functions 

are automatically infinitely differentiable. 

Theorem: If  u C U satisfies the mean value property for each ball  ,B x r U , then 

                                                      u C U  

Proof: Define a set   ,U x U dist x U 

    and     be a standard mollifier. 

Set        u u 


     in   U                       …  (1) 

We first show that  u C U


 . 
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Fix x U


 , where   1 2
, ,...,

n
x x x x . 

Let h be very small such that x he U
i 

  . 

                                    *u x u 


  

                                               
1

n

U

x y
u y dy




 

 
  

 
                         …  (2) 

                                      
1 x y he

iu x he u y dy
i n

U

 




  
   

 
 

           … (3) 

Now using (2) and (3), we have 

                                    
   

 
1

i

n

U

x y he x y
u x he u x

i
u y dy

h h


   
 



      
      

   
 
  

        

Taking the limit as 0h   

                                       
 

 1

1
n

i i iU U

x y

x yu
u y dy u y dy

x x x
 







 

 
       

     

Since  nC R  .   So 
i

u

x




 exists. 

Similarly D u 
exists for each multi-index  .  

So  u C U


 . 

We now show that u u  on U  . 

Let x U  then 

                                      u x x y u y dy

U

 


   

                                              
 

1

,

x y
u y dy

n
B x




  
   

 
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                                               
 0 ,

1
n

B x r

r
u y ds dr




 



  
      

        (using the cor. of coarea formula) 

                                                  1

0

1 n

n

r
n n r u x dr



 
 

 
  

 
     (by Mean value formula) 

                                                
    1

0

n

n

n n u x r
r dr




 

 
  

 
   

                                                
 

 0,

n

B

u x y
dy




 

 
  

 
  

                                                    
 0,B

u x y dy



                  (by definition) 

                                                   u x  

So u u   in U


 and so  u C U


  for each 0  . 

Note: The above property holds for each 0  . It may happen u may not be smooth or even continuous 

upto U .  

2.6.3  Local Estimate for Harmonic Functions 

Theorem: Suppose u  is harmonic in U . Then 

(i)     1 ,0
0

C
kD u x u

L B x rn kr

 
                                                      … (1) 

For each ball 0
( , )B x r U  and each multiindex   of order k  . 

(ii) 
 

0

1
C

n
      ,   

 
 

12
k

n

k

nk
C

n



          1,...k      … (2) 

Proof: We prove this by induction. 

For 0, 0k   . 

To show  
    

1
1 ,0

u x u
L B x rnr n

  

By mean value theorem 

                             

 
0

,
0

u x u y dy

B x r

    for each ball  0 ,B x r U  
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                           
 

 
 0

0

,

1
n

B x r

u x u y dy
n r

   

                            
    1

0
0 ,

1
n L B x r

u x u
n r

                          …  (3) 

                            
  1

0

0 0
0 ,n L B x r

C
D u x u

r
  

Hence the result. 

For k=1, To show  

                             
  1

0

1
0 1 ,n L B x r

C
Du x u

r 
  

where                  
 

1

1

2n n
C

n



     

Consider 

                                
2 2

2 2

1

...
i i ix x x

n

u u u
x x

 
   

 
    

                                        0
i

u
x


  


  

 So, 
ixu  is harmonic. By mean value theorem 

                                         
0

0

,
2

i ix x

r
B x

u x u dx
 
 
 

   

                                                      

  0 ,
2

1

2

ixn

r
B x

u dx
r

n  
 
 


 
 
 

      

                                                       

  0 ,
2

1

2

in

r
B x

uv ds
r

n  
 
 


 
 
 

         (By Gauss- Green Theorem) 
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                                                        =

0 ,
2

2n

i

r
B x

uv ds
r

 
  

 

     

                                                        
0 ,

2

2n

r
L B x

u
r

   
  

  

                         …  (4) 

If 0 ,
2

r
x B x

 
  

 
 then  0, ,

2

r
B x B x r U
 

  
 

. 

By equation (3) 

                                 
 

2
1 ,

2

n
ru x u

L B xnn r

  
  
  

 

                                         
    
2

1 ,
0

n
u

L B x rnn r
  

Hence 

                               
    
1 2

1, ,
0 02

n
ru u

L B x L B x rn r

           
  

                  … (5) 

From (4) and (5) 

                              
    

12 .
1 ,0 1 0

n n
u x u

L B x rx nn ri 





 

                        
1 1 ,0 1 0

C
D u x u

L B x rnr

 
        

Hence result is true for k=1. 

Assume that result is true for each multiindex of order less than or equal to k-1 for all balls in U . Fix 

0( , )B x r U  and   be multiindex with k    

 

                         
ix

D u D u   for some  1,2,3,...,i n     

where 1k   . Consider the ball 
0
,
r

B x
k

 
 
 
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                               0
ix

D u x D u   

                                            
0 ,

r
L B x

k

kn
D u

r



   
  
  

                   … (6) 

If 0 ,
r

x B x
k

 
  

 
 then 

                           0

1
, ,
k

B x r B x r U
k

 
  

 
 

By assumption, in the ball 
1

,
k

B x r
k

 
 
 

 

                            
 

 
1

1
1

10 1 ,

2 1

1

k
n

k
n k L B x r

k

n k
D u x u

k
n r

k








      
  

  
 

 
 

                        … (7) 

From (6) and (7)  

                            
 

 
  1

0

1
1

0 1 ,

2 1

1

k
n

n k L B x r

n kkn
D u x u

r k
n r

k








 

  
 

 
 

 

                                            
 
    1

0

1

,

2
k

n

n k L B x r

nk
u

n r




    

Since, 

                          
 

1
1

2 2 1

n

k

k

 
 

 
    for all  2k       

Hence result holds for k  . 

2.6.4  Liouville’s Theorem  

We see that there are no nontrivial bounded harmonic functions on all of 
nR   

Theorem: Suppose : nu R R  is harmonic and bounded. Then u  is constant. 

Proof: Let 0 , 0nx R r  , then by mean value theorem 
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                                          
0

0 0

,
2

i ix x

r
B x

Du x u x u dx
 
 
 

    

                                                     = 
 

0 ,
2

2n

n

r
B x

uvds
n r

 
  

 

       ( By Guass Green’s theorem) 

                                                     
0 ,

2

2n

r
L B x

u
r

   
  

  

  

If 0 ,
2

r
x B x

 
  

 
 then  0, ,

2

r
B x B x r
 

 
 

 

                                        
    1

0 ,

1 2
n

L B x r
u x u

n r

 
  

 
 

Hence 

                                    
    1

0
0 ,

2 2 1
i

n

x L B x r

n
u x u

r r n

 
  

 
 

                                                  
    1

0

1

1 ,

2n

n L B x r

n
u

r n




  

                                                    

12
0n

n

L R

n
u

r




   as 0r   

Hence 0Du  . 

So u  is constant. 

Theorem: Representation Formula 

 Let  2 , 3n

cf C R n  . Then any bounded solution of u f   in nR             (1) 

of the form 

                                                 
nR

u x x y f y dy c             nx R  

For some constant c and  x  is the solution of Laplace’s equation. 

Proof: Since   0x   as x   for 3n   

                              x  is bounded. 
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Let u  be a solution of equation (1) which is represented as 

                                               
nR

u x y f y dy    

and it is bounded. 

Since  2 nf C R and  x is bounded for 3n  . Let u be another bounded solution of equation (1)  

Define w u u   

                                             0w   

and w is bounded     ( difference of two bounded functions)    

By Liouville’s theorem 

                                              wconstant 

                                            oru u c    

                                           u u c    

This is the required result. 

Note: For n=2,  
1

log
2

x x



  is unbounded as x  and so may be  

                                           
2R

x y f y dy   

2.6.5 Analytically 

Theorem: If  u   is harmonic in U then u  is analytic inU . 

Proof: Suppose that 
0

x
 
be any point in U . Firstly, we show that u can be represented by a convergent 

power series in some neighbourhood of 0x . 

Let  0

1
,

4
dist x U    

Then M
    1

0 ,2

1
n L B x r

u
n r

                    …  (1) 

for each      0 0, , , ,2x B x r B x r B x r U    

By estimates of derivatives 

                                           
  1

0
0 ,

k

n k L B x r

c
D u x u

r




  



90 Partial Differential Equations 

  where       
 

 

12
k

n

k

nk
c

n



 for each k   

So                  
  

 
    1

00

1

0 ,,

2
k

n

n k L B x rL B x r

nk
D u x u

n r









  

                                                    

12n n
M

r






 
  

 
                     …  (2) 

By Sterling formula 

                                  

1

2

0

1
lim

! 2

k

kk

k

k e 




  

                                  !k kk ck e  , where c is constant. 

Hence, 

!ce
 

                   

  …   (3) 

for some constant c and all multi indices . 

Furthermore, the Multinomial theorem implies 

                                       
!

1 ... 1
!

kk

k

n






                 …(4) 

where   ! !n


                              

Using (4) and (3) in (2) 

                                   
  0

1

0 ,

2
!

n

L B x r

n
D u x M ce n

r



  


 
  

 
 

                                                                 

1 22
!

n n e
Mc

r




 

  
 

  

Taylor series foru   at 0x  is 

                                 
 

 0

0
!

D u x
x x




 
  

The sum taken over all multiindices. 
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We claim that this power series converges, provided 

                            
0 2 32n

r
x x

n e
     

To verify this, let us compute for each N 

The remainder term is 

                            
   0 0 0

!
N

N

D u x t x x x x
R x



 





  
   

For some 0 1t  , t depending on x. 

                           
1 2

2 3

2

2

N Nn

N n

n e r
R x cM

r n e





   
    

  
  

                                        
1

2

N

N

cM
n 

 
  

 
  

                                         0
2N

cM
   as 0N   

Series is converges.  

So  u x  is analytic in neighbourhood of 0x . 

But 0x  is arbitrary point of U . 

So u  is analytic in U . 

 

2.6.6 Harnack’s Inequality 

This inequality shows that the values of non-negative harmonic functions within open connected subset 

of U , are comparable. 

Theorem: For each connected open set V U ,   a positive constant c, depending only on V , such that 

                                      sup inf
VV

u c u                         …   (1) 

For all nonnegative harmonic functions u  in U . 

Thus in particular 

                                          
1

u y u x cu y
c

                     ,x y V   

Proof: Let  
1

,
4

r dist V U   
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Choose , ,x y V x y r   . Then 

                                          
     ,2 ,

1

2n n

B x r B y r

u x udz udz
n r

               

                                                   =
 

 
,

1 1

2 2n n

B y r

udz u y   

                                             2nu x u y                 …  (2) 

Interchanging the role of x and y 

                                               2nu y u x                    …   (3) 

Combining (2) and (3) 

                                               
1

2
2

n

n
u y u x u y           ,x y V  

Since V  is connected, V  is compact, so V  can be covered by a chain of finite number of balls  
1i i

B


 

such that 0i jB B   for i j  each of radius 
2

r
. 

Therefore, 

                                           
1

2nN
u x u y               ,x y V   

                                           
1

u x u y
c

  

Similarly, 

                                           cu y u x  

So,                                      
1

u y u x cu y
c

              ,x y V   

 

2.7 Green’s Function: 

Suppose that nU R  is open, bounded and U is 1C . We introduced general representation formula for 

the solution of Poisson’s equation 

                                          u f    in U                        … (1) 

subjected to the prescribed boundary condition 

                                             u g   on U                      …  (2) 
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Theorem: (Derivative of Green’s function)  

Derive the Green’s function of equation (1) under the initial condition (2). 

Proof: Let  2u C U  is an arbitrary function and fix x U , choose 0   so small that  ,B x U 

and  apply Green’s formula on the region  ,V U B x    to  u y  and  y x  . 

Then, we have 

                                               
V

u y y x y x u y dy



                        

                                                   
 

 
V

u y
u y y x y x ds y


 



 
    

  
     

where   denoting the outer unit normal vector on V . Also   0x y    for x y . 

Then  

                                           
V

y x u y dy



     

                                               
 

 
 

 

 
,U B x

y x u y
u y y x ds y


 

 

   
   

  
         … (3) 

Now 

                       
 

 
 

      
,

,

L B x

B x

u y
y x ds y Du y x ds y





 




    

   

                                                                      1

2

1
( ) 0n

n
c n n o  





       as 0          … (4) 

Also 

                       
 

 
 

 
 

 
 , 0,B x B

y x y
u y ds y u y x ds y

 
 

 

  
 

    

Now 

                             
 
1

n

y
D y

n n y
         , 0y   

                            
y

y
   =

y




  

 
 

 

 
 

 
 

1

0, 0,

1
n

B B

y
u y x ds y u y x ds y

n n
 

   

 


  

   
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 

   
 

1

,

1
n

B x

u y ds y
n n


  



   

                                     =    
 

 
,B x

u y ds y u x


    as 0                      … (5) 

Using (4) and (5) in equation (3) and making 0   

                        

   
 

     
U U

y x u
y x ydy u y y x ds y u x

 


  
        

  
    

               

Thus 

                             
 

     
U U

y xu
u x y x u y ds y y x u y dy

 


  
        

  
         …(6) 

This identity is valid for any point x U and for any function  2u C U and it gives the solution of 

problem defined by equation (1) and (2) provided that   ,
u

u y





 are known on the boundary U  and the 

value of u  in U . But 
u






 is unknown to us along the boundary. Therefore, we have to eliminate 

u






 

to find the solution. For it, we define a correction term formula  x y   (for fixed x) given by the 

solution of  

                                        0x    in U 

                                          x y x     on U                …. (7) 

Let us apply Green’s formula once more, 

                                  
x

x x x

U U

u
u y u y dy u y ds


  

 


  
          
             

Then we have 

                        
x

x x

U U

u
u y dy u y dx


 

 


  
    

  
                          … (8) 

Adding equation (6) and (8) 

                              
   

 
x

x

U U

y x y
u x y x y u y dy u y dy







                   … (9) 

Now we define Green’s function for the region U  as 

 y x
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                                       , xG x y y x y              , ,x y U x y                    …  (10) 

From equation (9) and (10) 

                                 
 

 
,

,
U U

G x y
u x G x y u y dy u y ds x





   

                        … (11) 

where 
 

   
,

, .y

G x y
D G x y y







is the outer normal derivative of G with respect to the variable y. Also 

we observe that equation (11) is independent of 
u






. 

Hence the boundary value problem given by equation (1) and (2) can be solved in term of Green’s function 

and solution is given by equation (11) is known as Representation formula for Green’s 

 Function.                     

Note: Fix x U . Then regarding G as a function of y, we may symbolically write  

                                                        xG     in U  

                                                           G = 0  on  U  

where  x  denoting the Dirac Delta function. 

2.7.1 Symmetry of Green’s Function 

Theorem: Show that for all , , ,x y U x y    ,G x y  is symmetric i.e.    , ,G x y G y x . 

Proof: For fix  , ,x y U x y   

Write 

                                , , ,v z G x z w z G y z         z U  

Then 

                                 0 , 0v z z x w z z y       

and                    0w v    on  U . 

Applying Green’s formula on    , ,V U B x B y        for sufficiently small 0   yields. 

                             
 

 
 , ,B y B x

w v v w
v w ds z w v ds y

 
   

 

      
     

      
                 … (1) 

  denoting the inward pointing unit vector field on    , ,B x B y   . 

Now w  is smooth near x , so 
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 
 ,

,

B x

B x

w
vds Dw ds




 






   

                                                       1 0nc     as  0                             …   (2) 

We know that       ,xv z z x z   where 
x  is smooth in U .Thus 

                               
 

   
 

 
0 0

, ,

lim lim
B x B x

v
wds x z w z ds w x

 
 

  
 

 
  

     

 Now we have 

                                 
 

0
,

lim
B x

v w
w v ds z w x




 


  
  

  
  

Similarly, 

                                 
 

 
0

,

lim
B y

w v
v w ds z v y




 


  
  

  
  

Therefore from equation (1) , we have 

                                           w x v y  

                                       , ,G x y G y x   

Hence proved. 

 

2.7.2 Green’s Function for a Half Space 

Definition: If  1 1,..., , n

n nx x x x R   , its reflection in the plane 
nR  is the point 

                                1 1,..., ,n nx x x x . 

Definition: Green’s function for the half space 
nR  is 

                                                  ,G x y y x y x                    , ,nx y R x y   

Example: Solve the boundary value problem 

                                             0u    in  
nR  

                                             u g   on  
nR  

with the help of Green’s function. 
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Solution: Let , ,nx y R x y  . 

By definition,      , xG x y y x y    

We choose the corrector term 

                             x y y x                               … (1) 

where x  is reflection of x  w. r. t. 
nR . 

Clearly 0x    in 
nR  

Now 

                     
   

2

1

2
n

y x
n n n y x


  

 
 ,     3n                                              

                     
 

1 1

1

n

y x
y x

y n n y x


  

 
 

                     
 

 

 

22
1 1

22

1

1
n n

y x

y n n y x n y x 


 
  

  
 

                           

               ----------------------------------------------------------- 

               ----------------------------------------------------------- 

              ------------------------------------------------------------ 

                  
 

 
2

2

2

1
n nn

n

y x
y n n y x

 
   

 
 

Adding      0y x     on  
nR    y x y x    

So           y x y x     

Hence both conditions are satisfied. 

So, Green’s function 

                            ,G x y y x y x      is well defined. 

So, using the representation formula 

                                 0 ,
nR

G
u x g y x y ds y





 

  
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                               ˆ, . ,
n

G G
x y DG x y

y




 
  

 
 

                                
n n n

G
y x y x

y y y

  
   

  
 

                                     
   

n n n n

n n

y x y x

n n y x n n y x 

  
   

   

 

                                      
 

2 n

n

x

n n x y



            ,non R y x y x            

                             
 

 
 

2

n

n

n

R

g yx
u x ds y

n n x y





                               nx R  

This is the required solution and is known as Poisson’s formula. 

The function 

                             
 

2 1
, n

n

x
K x y

n n x y



              ,n nx R y R    

is Poisson’s kernel for 
nR . 

2.7.3 Green’s Function for a Ball 

Definition: If  0nx R  , the point  
2

x
x

x
  is called the point dual to x with respect to  0,1B

Definition: Green’s function for the unit ball is       ,G x y y x x y x    

  , 0,1 ,x y B x y  . 

Example: Solve the boundary value problem 

                                                          0u    in   0,1B  

                                                          u g    on   0,1B  

   with the help of Green’s function. 

Solution: Fix any point  0 0,1x B  and y x  

The Green’s function is given by 

                                                             ,G x y y x y    

We choose                   x y x y x     
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where x  dual of x  w. r. t.  0,1B  

 As we know  y x   is harmonic. So  y x   is also harmonic for y x . Similarly  
2 n

x y x

   

is harmonic for y x . 

Or   x y x   is harmonic for y x  

So, 0x   in   0,1B  

On  0,1B : 

                                     x x y x     

But 

                                   

2 2

2 2 2 1
1 2

... n
n n

xx
x y x x y y

x x

     
          

   
     

 

                                                     
2 2

2 2

1 2xy
x y

x x

  
   

  

 

                                                     2 1 2x xy                          1y   

                                                      
2 2

2x y xy    

                                                       
2

x y   

So       x x y x y x       . 

Hence both conditions of  x y are satisfied. 

So 

                    ,G x y y x x y x        is well defined. 

Hence solution of given problem is given by 

                                          
 0,1B

G
u x g y ds y





 

  

Now on  0,1B  

                        .
G G

y




 


 
,   being the unit normal. 
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G y

y y





 i

i

G
y

y





           1y   

                        
   

2

i ii i

n n

i

y x xx yG

y n n x y n n x y 


 

  
 

                               
 

2

i i

n

y x y

n n x y





 

                         
 
 

2
1

n

xG

n n x y 


 

 
 

Therefore we have 

                            
  

 
2

0,1

1
n

B

x
u x g y ds y

n n x y





  

This is the required solution. 

2.7.4 Energy Methods 

Theorem: (Uniqueness) 

 There exists at most one solution  2u C U  of the boundary value problem 

                                             u f    in U  

                                               u g   on  U  

where U  is open, bounded and U is 1C . 

Proof: Let u  be another solution of given problem. 

Let  w u u   then  0w   in U  

                                  0w   on U  

Consider  

                        
i

i
x

x
U U

w wdx w w dx    

Integrating by parts 

                                       
i i ix x x

U U

w w dx w wvds


     ,    being the unit normal 

                                        2
0

U

Dw dx    
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2

0Dw    in  U  

                       0Dw    in  U 

                       w   constant in U  

But   0w   in U     

Hence 0w    in  U  

u u   

Hence uniqueness of solution. 

Dirichlet’s Principle: Let us demonstrate that a solution of the boundary value problem for Poisson’s 

equation can be characterized as the minimize of an appropriate functional. 

Thus, we define the energy functional 

                                                  
21

2
U

I w Dw wfdx   

w belonging to the admissible set  2 ( ) |A w C U w g on U       

Theorem: Let  2u C U  be a solution of Poisson’s equation. Then 

                                                       min
w A

I u I w


                            …  (1) 

Conversely, if u A  satisfies (1) then u is a solution of boundary value problem 

                                                     u f   in U  

                                                        u g    on U                              … (2) 

Proof: Let w A  and u be a solution of Poisson’s equation. So 

                                                       u f    in  U  

            0
U

u f u w dx      

                      
U U

u u w dx f u w dx        

Integrating by parts 

             0 . .
U U U

Du D u w dx u w Du vds f u w dx


         

               . 0 .
U U

Du Du fu dx Du Dw fw dx       
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   
2

.
U U

Du fu dx Du Dw fw dx      

 2 2 21 1

2 2
U

Du fu dx Du Dw fw dx
 

     
 

         (By Cauchy-Schwartz’s inequality) 

So  
2 21 1

2 2
Du fu dx Dw fw dx

   
     

   
   

         I u I w  

Since u A , So 

                              min
w A

I u I w


  

Conversely, suppose that    min
w A

I u I w


  

For any   cv C U , define     i I u v     ,  R   

So  i   attains minimum for 0   

     ' 0i     for  0   

    
21

2
U

i Du Dv u v f dx  
 

    
 
  

             
2 221

2
U

Du Dv DuDv u v f dx  
 

     
 
          

    ' 0 .
U

i Du Dv vf dx   

Integration by parts 

     0 .
U U

v udx Du ds vfdx


        

     0
U

u f vdx                         cv C U    

This is true for each function  cv C U . 

So  u f     in  U . 

So u is a solution of Poisson’s equation. 



 

  

CHAPTER-3 

HEAT EQUATIONS 

Structure 

3.1 Heat Equation – Fundamental solution 

3.2 Mean value formula 

3.3 Properties of solutions 

3.4 Energy methods for Heat Equation 

3.1 Definition: The non- homogeneous Heat (Diffusion) equation is 

 ,tu u f x t                   … (1) 

where nx U R  ,  : 0,f U R   ,  : 0,u U R   , the Laplacian   is taken w.r.t. spatial 

variable x, and the function f is given while we have to solve this equation for the unknown function u. 

 If ( , ) 0f x t  , then the equation  

                                                 0
t

u u                                           …  (2) 

is known as homogeneous heat equation. 

Physical interpretation: In typical applications, the Heat equation represents the evolution in time of the 

density u of some quantity such as Heat, chemical concentration, etc. If V U  is any smooth subregion, 

the rate of change of the total quantity within V equals the negative of the net flux through V . 

                                                    ˆ.
V V

d
udx F ds

dt




    

F  being the flux density. Thus 

                                                      tu divF                                                …  (3) 

where V is arbitrary. 

Theorem: (Fundamental Solution) 

 Find the fundamental solution of homogeneous Heat equation  

         0 [0, ) ...(1)tu u in U     

where nU R  is open. 
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Proof: It can be seen from the equation (1) that first order derivate involves w.r.t. to t and second order 

derivate w.r.t. the space variables 1 2
, ,...,

n
x x x  .  Consequently, if u solves the equation (1), so does

2( , ) for u x t R   . 

So, we seek a solution of equation (1) of the form 

                                                       
1

,
x

u x t v
t t
 

 
   

 
                             ….  (2) 

for , 0. Here, ,nx R t     are constants to be determined and the function : nv R R  must be find. 

Put 
x

y
t

  in equation (2), we have  

                                                          
1

,u x t v y
t

                                  ... (3) 

Differentiating (3) w. r. t. t and x 

                                                    
1 1

yDv
u v y
t

t t

 

 


 

 
  

                                                   
1

2
u v

t
 

  


 

Using these expression in equation (1) and simplifying 

                                                       2 1

1
0v y yDv v

t 
 


                         … (4) 

Now, we simplify the equation (4) by putting 
1

2
   , so that the transformed equation involves the 

variable y only and the equation is  

                                                       . 0v y y Dv v                                    … (5) 

We seek a radial solution of equation (5) as  

                                                        v y w r   where  r y                              ….(6) 

where :w R R .  

From equation (5) and (6), we have 

     
2

3

'( ) '( )                  ( )

1
and  ''( ) '( )

i

i i

i

y

i i

y y

i

y y
v w y w y y r

y r

y yr
v w r w r

r y r r


  



  
    

   
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                                                           
1

" '
n

v y w r
r


 

    
 

 

Using value of ( )v y  in equation (4), we get 

                                                          
1

" ' 0
2

r n
w w w

r


 
    
 

                    …  (7) 

Now, if we set  
2

n
   and multiply by 1nr  in equation (7).  

Then we have 

                                                            
 

1
'

' ' 0
2

n

n
r w

r w                                  … (8) 

Integrating equation (8) 

                                                    
1 '

2

n
n r w

r w a    , where a is a constant 

Assuming   lim , ' 0
r

w w


 , we conclude   0a  , so 

                                                                      
1

'
2

w rw                                        … (9)   

Integrating again, we have some constant b 

                                                                     
2

4
r

w be


                                     …. (10) 

where b is the constant of integration. 

Combining (2) and (10) and our choices for ,  , we conclude that  

                                                                      
2

2 4
n

xb
e

tt


  solves the Heat equation (1) 

To find b, we normalize the solution 

                                                                       , 1
nR

u x t dx   

                                                                      

2

4

2

1
n

x
t

n

R

b
e dx

t



  

                                                                      
2

2 1
n

n

b
t

t
   
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  2

1

4
n

b


  

Here the function 

                                                           
 

 

2

4

2

1
; , 0

4,

0 , , 0

x
nt

n

n

e x R t
tx t

x R t




 

  


 

                      

is called the fundamental solution of the Heat equation. 

Remarks: (i)   is singular at the point (0,0).   

(ii) Sometimes, we write  ( , ) ,x t x t    to emphasise that the fundamental solution is radial in the 

variable r.  

Theorem: Solution of Initial value problem 

Solve the initial value (Cauchy) problem  

  
 

0 (0, ) ...(1)

0 ...(2)

n

t

n

u u in R

u g on R t

   

  
 

associated with the homogeneous Heat equation, where    n ng C R L R  .  

Proof:   Let                … (3) 

be the fundamental solution of the equation (1). From earlier article, we note that ( , ) ( , )x t x t  solves 

the Heat equation away from the singularity (0,0) and thus so does ( , ) ( , ) for each fixed nx t x y t y R  

. Consequently, the convolution 

                                             
 

 

2

4

2

1
,

4 n

x y

t
n

R

u x t e g y dy
t

 

                           

                                                                                    
nR

x y g y dy          … (4) 

Here, we will show that 

(i)    0,nu C R    

(ii)     , , 0tu x t u x t               , 0nx R t   

(iii)  
   

   
0

0

, ,0

lim ,
x t x

u x t g x


     for each point  
0 , 0nx R t   

 
 

 
2

4

2

1
, ; , 0

4

x
nt

n
x t e x R t

t



   
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Proof: (i) Since the function  

2

4

2

1
x

t
n

e
t



 is infinitely differentiable with uniform bounded derivative of all 

order on  ,nR    for 0  . 

So   0,nu C R   . 

(ii)     ,
n

t t

R

u x y t g y dy    

                   ,
nR

u x y t g y dy     

      0tu u          (since  x y   is a solution of Heat equation) 

(iii)  Fix 0 nx R . Since g is continuous, given 0, 0     such that     0g y g x    whenever 

         0 , ny x y R   . 

         Then if 0

2
x x


   

                           0 0, ,
nR

u x t g x x y t g y g x dy     
   

                                                        
 0

0

,

,

B x

x y t g y g x dy



     

                                                                  
 0

0

,

,
nR B x

x y t g y g x dy



     

                                                        I J                      …  (5) 

Now            ,
nR

I x y t dy      

Furthermore, if 0

2
x x


   and  0y x    then 

                0 01

2 2
y x y x y x y x


         

Thus       01

2
y x y x    

Consequently 

                         
 0 ,

2 ,
n

L

R B x

J g x y t dy







    
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 

2

0

4

2
,n

x y

t
n

R B x

c
e dy

t 

 



     

                             

 

2
0

0

16

2
,n

y x
dy

t
n

R B x

c
e

t 

 



   

                             

2

116

2

0
r

nt
n

c
e r dr

t 

 

    as  0t   

Hence, if 0

2
x x


   and t>0 is small enough,    0, 2u x t g x   . 

The relation implies that 

0

0

( , ) ( ,0)

, 0

lim ( , ) ( )
n

x y x

x R t

u x t g x




 

   

Thus, we have proved that equation u(x,t) given by equation (4) is the solution of the initial value 

problem. 

Theorem: Non-homogeneous Heat Equation 

 Solve the initial value problem  

  
 

(0, )

0 0

n

t

n

u u f in R

u on R t

   

  
 

associated with the non-homogeneous Heat equation, where   2

1 0,nf C R   and f  has compact 

support.  

Proof:  

       Define u  as 

                           
 

   

2

4

2
0

1
, ,

4 n

x yt
t s

n

R

u x t e f y s dyds

t s

 




  
              , 0nx R t        …(1) 

                                                                 
0

, ,
n

t

R

x y t s f y s dyds                          … (2) 

where   2

1 0,nf C R     and f  has compact support. 

Then 

(i)   2

1 0,nu C R    
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(ii)      , , ,tu x t u x t f x t         , 0nx R t   

(iii)
   

 
0, ,0

lim , 0
x t x

u x t


   for each point 0 nx R    , 0nx R t   

Proof: (i) Since   has a singularity at (0,0) we cannot differentiate under the integral sign. Substituting 

the variable 0, 0x y t s     and again converting to original variable. 

                                                        
0

, , ,
n

t

t

R

u x t y s f x y t s dyds      

Since   2 0,nf C R    and  ,y s is smooth near 0s t  , we compute 

                                   
0

, , ,
n

t

t t

R

u x t y s f x y t s dyds      

                                                             , ,0
nR

y t f x y dy               (By Leibnitz’s rule) 

                                  
2 2

0

, , ,
n

t

i j i jR

u
x t y s f x y t s dyds

x x x x

 
   

         , 1,...,i j n  

Thus,    2 2, 0,n

t xu D u C R   . 

(ii) Now 

        
0

, , , ,
n

t

t x

R

u x t u x t y s f x y t s dyds
t

   
         

   

   , ,
n

t

y

R

y s f x y t s dyds
s



   
        
   

   
0

, ,
n

y

R

y s f x y t s dyds
s


   

        
      

                                                               I J K                    … (3) 

Now 

                                               2

0

,
n

t L L
R

J f D f y s dyds c



  
                         

Also, we have 

     ( , ) ( , )
n

t

y

R

I y s f x y t s dyds
s





  
      

  
      

   , ,0
nR

y t f x y dy    

                                                         , ,
nR

y f x y t dy K                                    … (4) 

   , ,0
nR

y t f x y dy  

   , ,0
nR

y t f x y dy  

   , ,
nR

y f x y t dy    
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Since  solves the Heat equation. 

Combining (2) –(4), we have 

                                               
0

, , lim , ,
n

t

R

u x t u x t y f x y t dy


 


      

                                                                              ,f x y                  , 0nx R t   

(iii)                                       
0

, , ,
n

t

R

u x t y s f x y t s dyds      

                                       
     

0

,n n

n

t

L R L R

R

u f y s dyds     

                                                         
0

t

f ds f t   

Taking limit as 0t   

                                         
0

lim , 0
t

u x t


  for each  nx R . 

3.2 Mean-Value Formula for the Heat Equation 

Let nU R  be open and bounded. Fix a time 0T  . 

Definition: The parabolic cylinder is defined as  

                                                                      0,TU U T   

and the parabolic boundary of TU  is denoted by T  and is defined as  

                                                                        T T TU U    
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Interpretation: We interpret TU  as being the parabolic interior of  0,U T . We must note that TU

include to top  U t T  . The parabolic boundary T  comprises the bottom and vertical sides of 

 0,U T , but not the top. 

Definition (Heat ball): For fixed ,nx R t R  and 0r  , we define 

                                               1 1
, ; , t and ,n

n
E x t r y s R s x y t s

r

 
       
 

 

 , ;E x t r is a region in space-time. Its boundary is a level set of fundamental solutions  ,x y t s    

for the Heat equation. The point  ,x t  is at the centre of the top.  , ;E x t r  is called a Heat ball.   

 

 

     Heat Ball         

3.2.1 Theorem: Mean-Value Property for the Heat Equation 

 Prove that 

                                                             
  

2

2

, :

1
, ,

4 n

E x t r

x y
u x t u y s dyds

r t s





                 … (1) 

for each Heat ball  , ; TE x t r U . It is assumed that  2

1 Tu C U  solve the homogeneous Heat equation  

                                                                  0tu u    in   0,nR                               … (2) 

Proof: The formula (1) is known as mean-value formula. We find that the right hand side of (1) involves 

only  ,u y s  for times s t . It is reasonable, as the value  ,u x t should not depend upon future times. We 

may assume upon translating the space and time coordinates that 

                                                                   0, 0x t                                                            … (3) 

So we can write Heat ball as 

                                                                   0,0;E r E r                                                      … (4) 
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and set 

                                        
 

2

1
,

E r

y
r u y s dyds

r s
    

                                             
 

2

2

2

1

,
E

y
u ry r s dyds

s
         (by shifting the variable)              … (5)                         

Differentiating (5), we obtain 

                                
 

2 2

2
11

' 2
i

n

i y s

iE

y y
r y u ru dyds

s s




     
      

   
     
  

                                    
 

2 2

1 2

1
2

ii y sn

E r

y y
y u u dyds

r s s

     
      

   
     

     (Again shifting to original ball)                 

                                                               A B                                                                      … (6) 

We introduce the useful function 

                                                   
2

log 4 log
2 4

yn
s n r

s
                                              … (7) 

Then 

                                                    0,            on       E r                                                   …(8) 

Since, 

                                                   , ny s r      on   E r                                                     …(9) 

be definition of Heat ball. 

Now, we use (7) to write 

                                                
 

1
1

1
4

i

n

s i yn
iE r

B u y dyds
r






   

                                                    
 

1
1

1
4 4

i

n

s sy in
iE r

nu u y dyds
r

 




                                     … (10) 

There is no boundary term since 0   on   E r . 

Integrating by parts with respect to s, we find 

                                             
 

1
1

1
4 4

i

n

s y i sn
iE r

B nu u y dyds
r

 




     

                                                 
 

2

1 2
1

1
4 4

2 4i

n

s y in
iE r

yn
nu u y dyds

r s s





 
     

 
 

  
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 

1
1

1 2
4

i

n

s y in
iE r

n
nu u y dyds A

r s





     

This implies 

                                         ' r A B    

                                                    

 
1

1

1 2
4

i

n

y in
iE r

n
n u u y dyds

r s





 
    

 
  

                                                   
 

1
1

1 2
4

i i i

n

y y y in
i E r

n
nu u y dyds

r s





    = 0 

Therefore,   is constant. 

Thus                                  
 

 
2

20 0

1
lim 0,0 lim 4 0,0

nt t
E t

y
r t u dyds u

t s
 

 

  
   

  
                  …(11) 

                                        
   

2 2

2 2

1

1
4

n

E t E

y y
dyds dyds

t s s
                                                       …(12) 

From equation (4) and (11), we write 

                                                     
1

,
4

u x t r                                                                   …(13) 

From (5) and (13), we have 

                                             
  

2

2

, ;

1
, ,

4 n

E x t r

x y
u x t u y s dyds

r t s





                                        … (14) 

Hence proved. 

3.3 Properties of Solution 

3.3.1 Theorem: Strong Maximum Principle for the Heat Equation 

Assume    2

1 T Tu C U C U   solves the Heat equation in TU . Then 

(i) max max
T TU

u u


  

(ii) Furthermore, if U is connected and there exists a point  0 0, Tx t U  such that 

                                                            0 0, max
TU

u x t u  

Then  u  is constant in 
0t

U . 

Proof: Suppose there exists a point  0 0, Tx t U with 
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                                                               0 0, max
TU

u x t M u   

It means that the maximum value of u occur at the point (x0,t0). 

Then for all sufficiently small r>0, 

                                                                 0 0, ; TE x t r U  

By using the mean-value property, we have 

                                                           0 0,M u x t  

                                                                
  0 0

2

0

2

, ; 0

1
,

4 n

E x t r

x y
u y s dyds M

r t s


 


                    … (1) 

Since 

                                                       
  0 0

2

0

2

, ; 0

1
1

4 n

E x t r

x y
dyds

r t s





  

Form equation (1), it is clear that equality holds only if u is identically equal to M  within  0 0, ;E x t r . 

Consequently 

                                                ,u y s M   for  all    0 0, , ;y s E x t r  

Draw any line segment L in TU  connecting  0 0,x t with some other point  0 0, Ty s U , with 0 0s t . 

Consider 

                                             0 0 0min , int , ,r s s u x t M for all po s x y L s t t       

Since u is continuous, the minimum is attained. Assume 0 0r s .Then 

                                            0 0,u z r M  

for some point   0 0,z r  on TL U  and so 

                                                 u M  on  0 0, ;E z r r  for all sufficiently small r>0 

Since  0 0, ;E z r r  contains  0 0L r t r     for some small 0  , which is a contradiction. 

Thus  

                                       0 0r s  

Hence 

                                          u M  on  L                                                                  …(2) 
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Now fix any point x U and any time 00 t t  . There exists points  0 1, ,..., ,mx x x x  such that the line 

segments in nR connecting  1ix   to ix  lie in U  for  1,...,i m . (This follows since the set of points in U

which can be so connected to 0x
 
by a polygonal path is nonempty, open and relatively closed in U ).  

Select times 0 1 ... mt t t t    . Then the line segments in 1nR   connecting  1 1,i ix t  to   , 1,...,i ix t i m  

lie in TU . According to step 1, u M on each such segment and so  ,u x t M . 

Remark: 1. From a physical perspective, the maximum principle states that the temperature at any point 

x inside the road at any time (0 )t T   is less than the maximum of the initial distribution or the 

maximum of temperature prescribed at the ends during the time interval [0,t].  

2. The strong maximum principle implies that if U is connected and    2

1 T Tu C U C U   satisfies 

                                     
 

0 in

0 on 0,

on 0

t Tu u U

u U T

u g U t

  


  
   

                   

where 0g  , then u is positive everywhere within TU
 
if g is positive somewhere on U . This is another 

illustration of infinite propagation speed for disturbances. 

3. Similar results holds for minimum principle just by replacing “max” with “min”. 

3.3.2 Theorem: Uniqueness on bounded domains 

 Let  Tg C  ,  Tf C U . Then there exists at most one solution    2

1 T Tu C U C U  of the 

initial/boundary-value problem 

                                                           Tt

T

Uu u f in

u g on

 



                                 …  (1) 

Proof: If u u are two solutions of (1). Then 

   Tt

T

Uu u f in

u g on

 



                                                        …  (2) 

and  

 
t T

T

Uu u f in

on
u g


 


 

                                                                                … (3) 

Let  w u u   ,  then from equation (2) and (3), we have 

    ( ) 0t t tw w u u u u        
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 0
T

w on    

apply previous theorem to  w u u  
 
to get the result. 

3.3.3 Regularity 

Theorem: Smoothness 

Suppose 
2

1 ( )Tu C U solves the heat equation in TU . Then  

                                                                    Tu C U  

This regularity assertion is valid even if u attains non-smooth boundary value on T . 

Proof: We write  

                                                    2, ; , ,C x t r y s x y r t r s t       

To denote the closed circular cylinder of radius r , height 2r , and top centre point  ,x t  . Fix 

 0 0, Tx t U and choose 0r  so small that  0 0, ; TC C x t r U  . 

Define also the smaller cylinder 

                                                  0 0 0 0

3
' , ; , " , ;

4 2

r
C C x t r C C x t

   
    

   
, 

which have the same top centre point  0 0,x t . Extend 0  in   00,nR t C   

Assume that  Tu C U
 
and set      , , ,v x t x t u x t    0,0nx R t t    

Then 

                                            , 2 .t t tv u u v u D Du u             

Consequently 

                                            0v   on  0nR t                            … (1) 

and 

                                              2 .t tv v u D Du u f            in   00,nR t  

Now, set 

                                                    
0

, , ,
n

t

R

v x t x y t s f y s dyds      

We know that 
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 

 
00,

00

n

t

n

in R tv v f

on R tv

  


 
                             …  (2) 

Since ,v v A for some constant A , previous theorem implies v v , i.e. 

                                                
0

, , ,
n

t

R

v x t x y t s f y s dyds      

Now suppose  , "x t C . As 0  of the cylinder C, (1) and (3) imply 

                                           

              , , , , , 2 , . ,s

C

u x t x y t s y s y s u y s D y s Du y s dyds           

Integrate the last term by parts: 

                                    

              , , , , 2 , . , ,s y

C

u x t x y t s y s y s D x y t s D y s u y s dyds           
   

If u satisfies only the hypotheses of the theorem, we derive (4) with u u

  replacing ,u  being the 

standard mollifier in the variables x and t, and let 0  . 

Formula (4) has the form 

                                               , , , , ,
C

u x t K x t y s u y s dyds             , ''x t C  

where 

                                            , , , 0K x t y s   for all points  , 'y s C  

Since 1   on 'C . 

Note that K  is smooth on 'C C . 

We see u is C within 0 0

1
'' , ;

2
C C x t r

 
  

 
 

Theorem: Local Estimate for Solutions of the Heat Equation 

There exists for each pair of integers k, l=0,1,…, a constant ,k lC  such that  

                                                       1

,

2 2 , ;
, ;

2

max
k lk l

x t k l n L C x t rr
C x t

C
D D u u

r   
 
 
 

  

for all cylinder    , ; , ;
2 T

rC x t C x t r U   and all solutions u of the Heat equation in TU . 
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Proof: Fix some point in TU . Upon shifting the coordinates, we may as well assume the point is (0,0). 

Suppose first that the cylinder    1 0,0;1C C  lies in TU . Let 
1 1

0,0;
2 2

C C
   

   
   

 

Then 

                                             
 1

, , , , ,
C

u x t K x t y s u y s dyds                   
1

,
2

x t C
  

   
  

 

for some smooth function K . 

Consequently, 

                                              
 1

, , , , ,k l l k

x t t x

C

D D u x t D D K x t y s u y s dyds   

                                                                   
  1 1kl L C

C u  

for some constant klC . 

Now suppose the cylinder    0,0;C r C r lies in TU .  Let    0,0;
2 2

r rC C . 

We define  

                                                 2, ,v x t u rx r t  

Then 0tv v  in the cylinder  1C .  

According to (1) 

                                         
  1 1

,k l

x t kl L C
D D v x t C v                  

1
,

2
x t C

  
   

  
 

But                                    2 2, ,k l l k k l

x t x tD D v x t r D D u rx r t  

and                                
     1 121

1
nL C L C r

v u
r 

  

Therefore, 

                                          
    12 2

2

max k l kl
x t l k n L C rrC

C
D D u u

r   
  

Note: If u solves the Heat equation within TU , then for each fixed time 0 t T  , the mapping 

 ,x u x t  is analytic. However the mapping  ,t u x t is not in general analytic. 
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3.4 Energy Methods 

(a) Uniqueness 

Theorem: There exists at most one solution  2

1 Tu C U of 

                                                 Tt

T

Uu u f in

u g on

 



                               …  (1) 

Proof: If u  be another solution, w u u  solves 

Set 

                                           2 ,
U

e t w x t dx                     0 t T   

Then 

                                           2 t

U

e t ww dx   

                                                   2
U

w wdx   

                                                   2
2 0

U

Dw dx    

and so 

                                          0 0e t e               0 t T   

Consequently   w u u    in  TU . 

(b) Backwards Uniqueness 

 For this, suppose u  and u are both smooth solutions of the Heat equation in TU , with the same boundary 

conditions on U . 

                                                      
 

0

0,

Tt
Uu u in

U Tu g on

 


 
                           … (1) 

                                                       
 

0

0,

Tt
Uu u in

U Tu g on

 


 
                          …  (2) 

for some function g. 

Theorem: Suppose  2, Tu u C U  solve (1) and (2). If    , ,u x t u x t    x U then 

                                                                u u  within TU . 

Proof: Write w u u  and set 

                                                                   2 ,
U

e t w x t dx            0 t T   

Then 

                                                                 
2

2
U

e t Dw dx                                     …   (3) 

Also 
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                                                                  4 . t

U

e t Dw Dw dx    

                                                                          4 t

U

ww dx                                        … (4) 

                                                                            
2

4
U

w dx   

Since w=0 on U , 

                                                              2

U U

Dw dx w wdx     

                                                                                    

1 1
2 2

22

U U

w dx w dx
   

    
   
   

From (3) and (4) 

                                                           
2

2 24
U

e t Dw dx
 

  
 
  

                                                                         
22 4

U U

w dx w dx
  

   
  
   

                                                                          e t e t  

Hence 

                                                              
2

e t e t e t             0 t T                    … (5) 

Now if   0e t  for all 0 t T  , we are done. Otherwise there exists an interval    1 2, 0,t t T with 

                                                           0e t   for 1 2t t t  ,  2 0e t                          … (6) 

Write 

                                                          logf t e t            1 2t t t                             … (7) 

Then 

                                                      
 

 

 

 

2

2
0

e t e t
f t

e t e t
    

If 1 20 1, t t t     then 

                                                               1 11 1f t t f t f t         

Also 

                                                           
1

1 11 ,e t t e t e t
 

 


    

and so 

                                                           
1

1 2 1 20 1e t t e t e t
 

 


       0 1   

This inequality implies   0e t   for all times 1 2t t t  , a contradiction.  



 

  

CHAPTER-4 

WAVE EQUATIONS 

Structure  

4.1 Wave Equation – Solution by spherical means 

4.2 Non-homogeneous equations 

4.3 Energy methods for Wave Equation 

4.5 Wave Equation 

The homogeneous Wave equation is  

                                              0ttu u                        …  (1) 

and the non-homogeneous Wave equation 

                                              ttu u f                       …   (2) 

Here 0t   and x U , where nU R is open. The unknown is    : 0, , ,u U R u u x t    , and the 

Laplacian  is taken with respect to the spatial variables  1,..., nx x x . In equation (2) the function 

 : 0,f U R   is given. 

Remarks: 1. The Wave equation is a simplified model equation for a vibrating string (n=1). For n=2, it 

is membrane and it becomes an elastic solid for n=3. u(x,t) represents the displacement in some direction 

of the point x at time 0t   for different values of n. 

2. From physical perspective, it is obvious that we need initial condition on the displacement and velocity 

at time t=0. 

Solution of Wave equation by spherical means (for n=1) 

Theorem: Derive the solution of the initial value problem for one-dimensional Wave equation  

                                                  0tt xxu u   in  0,R                         …   (1) 

                                                           , tu g u h   on  0R t                         … (2) 

where g, h are given at time t=0.. 

Proof:  The PDE (1) can be factored as 

                                                          0tt xxu u u
t x t x

     
      

     
                … (3) 
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Set 

                                                            , ,v x t u x t
t x

  
  

  
                              … (4) 

Then, equation (4) becomes 

                                                             , , 0t xv x t v x t              , 0x R t        … (5) 

Equation (5) becomes the transport equation with constant coefficient (b=1). 

 Let                                         ,0v x a x                                                                  … (6) 

We know that the fundamental solution of the initial-value problem consisting of transport equation (5) 

and condition (6) is 

                                                   , , , 0v x t a x t x R t                           …  (7) 

Combining equation (4) and (7), we obtain 

                                                       , ,t xu x t u x t a x t    in  0,R                    …   (8) 

Also 

                                                      ,0u x g x  in R                                              … (9) 

By virtue of initial condition (2), Equations (8) and (9) constitute the non-homogeneous transport 

problem. Hence its solution is 

                                     
0

, 1

t

u x t g x t a x s t s ds        

                                             
1

2

x t

x t

g x t a y dy





                             … (10)       2x t s y     

The second initial condition in (2) imply 

                                                       ,0a x v x  

                                                                  ,0 0,0t xu x u   

                                                                  ' ,h x g x x R                                          … (11) 

Substituting (11) into (10) 

                                                        
1

, '
2

x t

x t

u x t g x t h y g y dy





       

                                                                    
1 1

2 2

x t

x t

g x t g x t h y dy





                   …(12) 

for , 0x R t  . 

This is the d’ Alembert’s formula. 
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Application of d’ Alembert’s Formula 

Initial/boundary-value problem on the half line  0R x   . 

Example: Consider the problem 

                                                     

 

 

   

0,

, 0 ...(1)

0 0 0,

tt xx

t

u u in R

u g u h on R t

u on x





  


   
    

                                  

where g, h are given, with   

                                   0 0, 0 0g h  .                                                                    …  (2) 

Solution: Firstly, we convert the given problems on the half-line into the problem on whole of R We do 

so by extending the functions , ,u g h to all of R by odd reflection method as below we set. 

                                                       
 

 

, 0, 0
,

, 0, 0

u x t for x t
u x t

u x t for x t

  
 

   
                               … (3) 

                                                        
 

 

0

0

g x for x
g x

g x for x

 
 

 
                                                  …(4) 

                                                         
 

 

0

0

h x for x
h x

h x for x

 
 

  
                                                …(5) 

Now, problem (1) becomes 

                                                        
 

 

0,

0,

tt xx

t

u u Rin

R tonu g u h

   


   
                                               …(6) 

Hence, d’ Alembert’s formula for one-dimensional problem (6) implies 

                                                              
1 1

,
2 2

x t

x t

u x t g x t g x t h y dy





                        …(7) 

Recalling the definition of , ,u g h in equations (3)-(5), we can transform equation (7) to read for 

0, 0x t   

                    

     

     

1 1

2 2 0
,

01 1

2 2

x t

x t

x t

x t

g x t g x t h y dy
if x t

u x t
if x t

g x t g t x h y dy







 


      

 
 

       






                    …(8) 

Formula (8) is the solution of the given problem on the half-line  0R x   . 
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Solution of Wave Equation (for n=3) 

Theorem: Derive Kirchhoff’s formula for the solution of three-dimensional (n=3) initial-value problem 

                                                    0ttu u 
   

 in   3 0,R                                 …(1) 

                                                     u g     on   3 0R t                                       …(2) 

                                                     tu h   on   3 0R t                                         …(3) 

Solution: Let us assume that   2 3 0,u C R   solves the above initial-value problem. 

As we know  

                                                         
 ,

; , ,
B x r

U x r t u y t ds y


                         …(4) 

defines the average of  .,u t over the sphere  ,B x r . Similarly, 

                                                         
 ,

;
B x r

G x r g y ds y


                                 …(5) 

                                                         
 ,

;
B x r

H x r h y ds y


                              …(6) 

We here after regard U as a function of r and t only for fixed x. 

Next, set 

                                                    U rU ,                                                                  …(7) 

                                                    ,G rG H rH                                                         …(8) 

We now assert that U solve 

                                          

 

 

 

   

0,0

0

0

0 0,0

tt rr

t

RinU U

R tonU G

R tonU H

ronU







   


 


 
   

                                    …(9) 

We note that the transformation in (7) and (8) convert the three-dimensional Wave equation into the 

one-dimensional Wave equation. 

From equation (7) 

                                                       tt ttU rU  

                                                              
2

rr rr U U
r

 
  

 
, Laplacian for n=3 
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                                                              2rr rrU U   

                                                               r r
U rU   

                                                               r rr
r

U U                                            … (10) 

The problem (9) is one the half-line  0R r   . 

The d’ Alembert’s formula for the same, for 0 r t  , is  

                                                  
1 1

; ,
2 2

r t

r t

U x r t G r t G t r H y dy



 

                         … (11) 

From (4), we find 

                                                              
0

, lim ; ,
r

u x t U x r t


                                  … (12) 

Equations (7),(8),(11) and (12) implies that 

                                                              
 

0

; ,
, lim

r

U x r t
u x t

r

 
  

 
 

                                                                           
   

 
0

1
lim

2 2

t r

r
t r

G t r G t r
H y dy

r r






   
  

  
  

                                                                              'G t H t                                    …(13) 

Owing then to (13), we deduce 

                                             
 

   
 , ,

,
B x t B x t

u x t t g y ds y t h y ds y
t

 

       
    
       

                  …(14) 

But 

                                    
 

   
 , 0,1B x t B

g y ds y g x tz ds z
 

                                                   … (15) 

Hence 

                 
 

    
 , 0,1

.
B x t B

g y ds y Dg x tz zds z
t

 

   
  

   
   

                                                            
 ,

.
B x t

y x
Dg y ds y

t


 
  

 
                              … (16) 

Now equation (14) and (16) conclude 
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                                     
 ,

, .
B x t

u x t g y Dg y y x th y ds y


                                 (17) 

for 
3 , 0x R t  . 

The formula (17) is called KIRCHHOFF’S formula for the solution of the initial value problem (1)-(3) 

in 3D. 

4.6 Non-Homogeneous Problem 

Now we investigate the initial-value problem for the non-homogeneous Wave equation 

                                                 
 

 

0,

0, 0 0

n

tt

n

t

u u f in R

u u on R t

    


   
                                                 … (1) 

Motivated by Duhamel’s principle, which says that one can think of the inhomogeneous problem as a set 

of homogeneous problems each starting afresh at a different time slice t = t0. By linearity, one can add up 

(integrate) the resulting solutions through time t0 and obtain the solution for the inhomogeneous problem. 

Assume that  , ;u u x t s to be the solution of  

                                                  
   

     
 

 

., ., 0 ,

., 0, ., .,

n

tt

n

t

u s u s in R s

u s u s f s on R t s

    


   
                        … (2) 

and set 

                                                     
0

, , ;

t

u x t u x t s ds               , 0nx R t                     …(3) 

Duhamel’s principle asserts that this is solution of equation (1).                                           

Theorem: Solution of Non-homogeneous Wave Equation 

Let us consider the non-homogeneous wave equation 

 

 

0,

0, 0 0

n

tt

n

t

u u f in R

u u on R t

    


   
                                                    …  (1) 

  
1

2 0,
n

nf C R
 
     and 2n  .  Define u as 

                                                       
0

, , ;

t

u x t u x t s ds            , 0nx R t                      … (2) 

Then 

(i)   2 0,nu C R    
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(ii) ttu u f    in  0,nR    

(iii)
   

 
   

 
0 0, ,0 , ,0

lim , 0, lim , 0t
x t x x t x

u x t u x t
 

   for each point 0 nx R  , 0nx R t  . 

Proof: (i) If n is odd, 
1

1
2 2

n n  
  

 
 and if n is even , 

2
1

2 2

n n  
  

 
 

Also     2.,.; ,nu s C R s    for each 0s  and so   2 0,nu C R   . 

Hence   2 0,nu C R   . 

(ii) Differentiating u w.r.t t and x by two times, we have 

                                      
0 0

, , ; , ; , ;

t t

t t tu x t u x t t u x t s ds u x t s ds     

                                   
0

, , ; , ;

t

tt t ttu x t u x t t u x t s ds    

                                               
0

, , ;

t

ttf x t u x t s ds    

Furthermore, 

                                     
0 0

, , ; , ;

t t

ttu x t u x t s ds u x t s ds      

Thus, 

                                     , , ,ttu x t u x t f x t        , 0nx R t   

(iii) And clearly    ,0 ,0 0tu x u x   for nx R . Therefore equation (2) is the solution of equation (1). 

Examples: Let us work out explicitly how to solve (1) for n=1. In this case, d’ Alembert’s formula gives 

                                            
1

, ; ,
2

x t s

x t s

u x t s f y s dy

 

 

   

                                            
0

1
, ,

2

t x t s

x t s

u x t f y s dyds

 

 

    

 i.e.                                     
0

1
, ,

2

t x s

x s

u x t f y t s dyds





               , 0x R t              …  (5) 

For  n=3, Kirchhoff’s formula implies 
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                                             
 ,

, ; ,
B x t s

u x t s t s f y s dS
 

    

So that 

                                             
 0 ,

, ,

t

B x t s

u x t t s f y s dS ds
 

 
  
 
 

   

                                                     
 

 0 ,

,1

4

t

B x t s

f y s
dSds

t s
 


   

                                                    
 

 0 ,

,1

4

t

B x r

f y t r
dSdr

r



    

Therefore, 

                                        
 

 ,

,1
,

4
B x t

f y t y x
u x t dy

y x

 


                3 , 0x R t   

solves (4) for n=3. 

The integrand on the right is called a retarded potential. 

4.7 Energy Methods 

There is the necessity of making more and more smoothness assumptions upon the data g and h to ensure 

the existence of a 2C  solution of the Wave equation for large and large n. This suggests that perhaps some 

other way of measuring the size and smoothness of functions may be more appropriate.  

(a) Uniqueness 

Let nU R be a bounded, open set with a smooth boundary U , and as usual set 

 0, ,T T T TU U T U U     , where T>0. We are interested in the initial/boundary value problem 

                                                

 0

tt T

T

t

u u f in U

u g on

u h onU t

 


 
   

                        … (1) 

Theorem: There exists at most one function  2

Tu C U  solving (1). 

Proof: If u is another such solution, then :w u u   solves 

                                                  

 

0

0

0 0

tt T

T

t

w w in U

w on

w onU t

 


 
   

 

Set “energy” 
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                                                       
221

, ,
2

t

U

e t w x t Dw x t dx                0 t T   

Differentiating e(t), we have 

                                                   .t tt t

U

e t w w Dw Dw dx   

                                                           0t tt

U

w w w dx       

There is no boundary term since w=0, and hence 0tw  , on  0,U T  . Thus for all 

   0 , 0 0,t T e t e    and so , 0tw Dw  within TU . Since 0w  on  0U t  , we conclude 

0w u u    in TU . 

(b) Domain of Dependence 

As another illustration of energy methods, let us examine again the domain of dependence of solutions 

to the Wave equation in all of space. 

 

Cone of dependence 

For this, suppose 2u C solves 

                                                         0ttu u   in  0,nR    

Fix 0 0, 0nx R t  and consider the cone 

                                                        0 0 0, 0 ,C x t t t x x t t      . 



 

  

CHAPTER-5 

NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS 

Structure 

5.1 Non-linear First Order PDE – Complete integrals 

5.2 Envelopes 

5.3 Characteristics 

5.4 Hamilton Jacobi equations (Calculus of variations, Hamilton ODE) 

5.5 Legendre Transform  

5.6 Hopf-Lax Formula 

5.7 Weak Solutions and Uniqueness 

5.1 Definition: Let U is an open sunset of Rn ,  1,...,
n

nx x x R  and let : nu U R R  . A general form 

of first-order partial differential equation for  u u x is given by  

 , , 0F Du u x  ,                                                                       … (1) 

where : nF R R U R   is a given function, Du is the vector of partial derivatives of u and ( )u x  is the 

unknown function.  

We can write equation (1) as 

                    
1, 2 , 1 2

( , , )

( ..., , , , ,..., )
n n

F F p z x

F p p p z x x x




  

for  , ,np R z R x U   . 

Here, “p” is the name of the variable for which we substitute the gradient  Du  and “z” is the variable for 

which we substitute ( )u x . We also assume hereafter that F is smooth, and set  

 

 

 

1 2

1 2

, ,...,

, ,...,

n

n

p p p p

z z

x x x x

D F F F F

D F F

D F F F







 . 
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Remark: The PDE  , , 0F Du u x  is usually accompanied by a boundary condition of the form u g

on .U  Such a problem is usually called a boundary value problem. Here our main concern is to search 

solution for the non-linear PDE 

Complete Integral: Consider the non-linear first order PDE 

 , , 0F Du u x                                                            … (1) 

Suppose first that nA R is an open set. Assume for each parameter  1,..., na a a A  , we have a 2C

solution 

     
 ;u u x a                                                              …   (2) 

of the PDE (1) and  

                         

1 1 1 1

2 1 2 2

1

2

...

...
,

... ... ... ...

...

n

n

n n n n

a x a x a

a x a x a

a xa

a x a x a

u u u

u u u
D u D u

u u u

 
 
 

  
 
  

                      … (3) 

A 2C function  ;u u x a (shown in equation (2)) is called a complete integral in U A provided 

(i)  ;u x a  solves the PDE(1) for each a A  

(ii)  2,rank D u D u n
a xa

    ,x U a A   

Note: Condition (ii) ensures  ;u x a ”depends on all the n independent parameters 1,..., na a ”. 

Example 1: The eikonal equation, 

                                            1Du                                                               …  (4) 

Introduced by Hamilton in 1827 is an approximation to the equations which govern the behaviour of light 

travelling through varying materials. A solution, depending on parameters 1,a b R  is 

                                               ; , .u x a b a x b                                            … (5) 

Example 2:  The Clairaut’s equation is the PDE 

                                                 .x Du f Du u                                          …  (6) 

where : nf R R is given. 

A complete integral is 

               ;u x a a x f a        x U                  … (7) 

for na R . 
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Example 3: The Hamilton-Jacobi Equation 

                                                           0tu H Du                                        … (8) 

with : nH R R is given and  , : nu u x t R R R   .A solution depending on parameters ,na R b R  is 

                                                           , ; ,u x t a b a x tH a b                    … (9) 

where 0t  . 

 Remark: For simplicity, in most of what follows, we restrict to 2n  . We call the two variables ,x y . 

Thus, we reduce to the case 

                                                         , , , , 0x yF u u u x y                                  … (7) 

In this case, the solution  ,u u x y is a surface in 3R . The normal direction to the surface at each point is 

given by the vector  , , 1x yu u  . 

5.2 Envelope 

Definition: Let  ;u u x a be a 1C function of x and U and A are open subsets of Rn. Consider the vector 

equation 

                                                      ; 0aD u x a       ,x U a A                        … (1) 

Suppose that we can solve (1) for the parameter aas a 1C function of x , 

                                                             a x                                                 …  (2) 

Thus 

                                                    ; 0aD u x x        x U                             …(3) 

We can call  

                                                      : ;v x u x x      x U                            …(4) 

is the envelope of the function   .;
a A

u a


 

Remarks: We can build new solution of nonlinear first order PDE by forming envelope and such types 

of solutions are called singular integral of the given PDE. 

Theorem: Construction of new solutions 

Suppose for each a A as above that  .;u u a
 
solves the partial differential equation 

                                                     , , 0F Du u x                                                …(5) 

Assume further that the envelope v , defined (3) and (4) above, exists and is a 1C function. Then v solves (5) 

as well. 
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Proof: We have     ;v x u x x   

                                                             
1

; ,
i i j i

m
j

x x a x

j

v x u x x u x x x  


   

                                                                  ;
ixu x x  

for 1,...,i n . 

Hence for each ,x U  

                                                             , , ; , ; , 0F Dv x v x x F Du x x u x x x      

Note: The geometric idea is that for each x U , the graph of v is tangent to the graph of  .;u a for

 a x . Thus  .;xDv D u a  at x , for  a x . 

Example 4: Consider the PDE 

                                                  22 1 1u Du                                           … (6) 

The complete integral is 

                                                    
1

2 2
, 1u x a x a         1x a   

We find that 

                                                
 

 
1

2 2

0

1
a

x a
D u

x a


 

 

 

provided  a x x  . 

Thus 1v   are singular integrals of (6). 

5.3 Characteristics 

Theorem: Structure of Characteristics PDE 

Let 
2( )u C U  solves the non-linear PDE  

  , , 0F Du u x   inU       

Assume 
1 2(.) ( , ,..., )nx x x x   solves the ODE  ( ), ( ), ( )

p
x D F p s z s x s ,  

where 
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  

   

( ) . , ( ) ( (.))

Then (.) solves the ODE.

.

( ), ( ), ( ) ( ), ( ), ( ) ( ) (3)

p s Du x z s u x

p

p D F p s z s x s D F p s z s x s p s
x z

 

  

 

and z(s) solves the ODE  
.

( ) ( ), ( ), ( ) . ( )
p

z s D F p s z s x s p s for those s such that ( )x s U   

Proof:  Consider nonlinear first order PDE 

                                                  , , 0F Du u x   in  U                               … (1) 

subject now to the boundary condition 

                                                   u g   on                         …  (2) 

where U and :g R are given. 

We suppose that andF g  are smooth functions. Now we derive the method of characteristics which solves 

(1) and (2) by converting PDE into appropriates system of ODE. Initially, we would like to calculate u(x) 

by finding some curve lying within U, connecting x with a point 0
x   and along which we can calculate 

u. Since equation (2) says onu g  . So we know the value of u at one end 0x  and we hope then to able 

to find the value of u all along the curve, and also at the particular point x. 

Let us suppose the curve is described parametrically by the function 

                                            1 ,..., nx s x s x s , the parameter s lying in some subinterval of R  

Assuming u is a 2C solution of (1), we define 

                                                    z s u x s                                                    … (3) 

Set 

                                                    p s Du x s                                                … (4) 

i.e.                                                 1 ,..., np s p s p s , where 

                                               
i

i

xp s u x s      1,...,i n .                            … (5) 

So  .z gives the values ofu along the curve and  .p records the values of the gradient Du . 

First we differentiate (5) 

                                                      
1

i j

n
i j

x x

j

p s u x s x s


                          …(6) 
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where 
d

ds
   

We can also differentiate the PDE (1) with respect to x  

                                
1

, , , , , , 0
j i i

n
j

x x x

j j i

F F F
Du u x u x s x s Du u x u Du u x

p z x

  
  

  
     … (7) 

We set 

 
.

( ) ( ( ), ( ), ( )) ( 1,2,..., )
j

j

F
x s p s z s x s j n

p


 


                                  …(8) 

Assuming (8) holds, we evaluate (7) at  x x s  and using equations (3) and (4), we have the identity 

                                                             

                         
1

, , , , , , 0
i j

n
i

x x

j j i

F F F
p s z s x s u x s p s z s x s p s p s z s x s

p z x

  
  

  
 Put this 

expression and (8) into (6) 

                                  , , , ,i i

i

F F
p s p s z s x s p s z s x s p s

x z

 
  

 
                      …(9) 

Lastly, we differentiate (3) 

                                 
1 1

, ,
n n

j j

j jj j

u F
z s x s x s p s p s z s x s

x p 

 
 

 
                       …(10) 

the second equality holding by (5) and (8). We summarize by rewriting equation (8)-(10) in vector notation 

   

 

 

( ) ( ), ( ), ( ) ( ), ( ), ( ) . ( )

( ) ( ), ( ), ( ) . ( ) ...(11)

( ) ( ), ( ), ( )

x x

p

p

p s D F p s z s x s D F p s z s x s p s

z s D F p s z s x s p s

x s D F p s z s x s

  





 

This system of 2n+1 first order ODE comprises the characteristic equation of the nonlinear first order 

PDE (1). 

The functions                1 1. . ,..., . , . , . . ,..., .n np p p z x x x  are called the characteristics. 

Remark: The characteristics ODE are truly remarkable in that they form a closed system of equations for

      . , . .x z u x and     . .p Du x , whenever u is a smooth solution of the general nonlinear PDE(1). 

We can use ( )X s  in place of ( )x s . 

Now we discuss some special cases for which the structure of characteristics equations is especially 

simple. 
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(a) Article  

Let us consider the PDE of the form  , , 0F Du u x  to be linear and homogeneous and thus has the form 

              , , . 0F Du u x b x Du x c x u x             x U
                                   ….

 (1)                             

Equation (1) can be written as  

                                          , , .F p z x b x p c x z            

So characteristics equations are                        

    px s D F b x   

                                                             b x s            (From last expression) 

and                              .pz s D F p     .b x s p s     (From last expression) 

                                                                 c x s z s   

Thus 

    

      

x s b x s

z s c x s z s





  


            …(2)                                    

comprise the characteristics equations for the linear first order PDE(1). 

Example 5: Solve two dimensional system 

         2 11 2x xx u x u u in U

onu g

 


                                                       

…(3)                                        

where U is the quadrant 1 20, 0x x  and  1 20, 0x x U      . 

Solution: Comparing (3) with (1), we have 

                                           
2 11 2, , 0x xF Du u x x u x u u     

                                             
1 22 1, . , 0x xx x u u u     

We get, 

                                                 2 1, ,       1b x s x x c x s     

Now                                        1 2,b x s b x b x  
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                                                           2 1,x x   

                                            1 2 2 1,b x x b x x    

The characteristics equations are 

                                             X s b X s  

and                                        z s c X s z s   

Therefore                           z s z s  

                                                2 1,X s x s x s   

                                           1 2 2 1, ,x s x s x s x s    

                                    1 2x s x s   and    2 1x s x s                                  …(4) 

Now                               1 2 1x s x s x s     

                                  1 1 0x s x s    

Auxiliary equation is 2 1 0D    

                                             D i    

                                            1 1 2cos sinx s c s c s                          … (5) 

So                                        2 1 2cos sinx s c s c s                                …(6) 

Integrate (5) w.r.t.s 

                                         2 1 2 3sin cosx s c s c s c                             …(7) 

From (5), we have 

                                            1 1 2sin cosx s c s c s                                …(8) 

Comparing (4) and (8) 

                                          2 1 2sin cosx s c s c s     

                                        2 1 2sin cosx s c s c s                                  …(9) 

From (7) and (9) 

                                       3 0c      
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Therefore                        2 1 2sin cosx s c s c s                                   …(10) 

Taking 0s   in (10) 

                                          2 20x c   

                                     2 0c                                     1 2 2, 0 0x s x s x at s    
   

Therefore                   1 1 cosx s c s                                                      …(11) 

and                               2 1 sinx s c s                                                     … (12) 

Put 0s   in (11) 

                                      1 10x c  

Let  0

1 10x x c   

Put value of
0

1c x  in (11) and (12) 

                                            
 

 

0

1

0

2

cos

sin

x s x s

x s x s




                                                        

 Also we have 

                                             

   

 

z s z s

dz
z s

ds



 
 

Integrating w.r.t.s 

                                               

 

0

0

0

0

log log

log

0

s

z s z

z
s

z

z z e

z z

 

 

 

 

   

Therefore                             0 sz s z e  

Also                                     u g on   

                                             1,0u x s g x s        …(13) 

We know that       u x s z s  
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So                                        1 2,u x s x s z s  

                                        0

1 0 ,0 0u x z z                                       …(14) 

Put (14) in (13) 

                                         0 sz s g x e  

Thus we have 

                                       0

1 1 cos cosx s c s x s   

and                                 0

2 1 sin sinx s c s x s   

and                                 0 sz s g x e  

Now select s>0 and 0 0x  , so that 

                                     
        0 0

1 2 1 2

0 0

1 2

, , cos , sin

cos sin

x x x s x s x s x s

x x s and x x s

 

  
 

Consider, 

                                     
 

2 22 2 0 2 2 0

1 2

2 2 0

1 2

sin cosx x x s s x

x x x

   

  

                

We have 

                                     

2

1

1 2

1

tan

tan

x
s

x

x
s

x





 
   

 

 

Thus 

                                       

      

    
2

1

0

arctan
2 2

1 2

s

x

x

u x s z s g x e

u x s g x x e

 
 
 

 

  

 

which is the required solution. 

(b) Article  

     A quasilinear PDE is of the form 

                                                 , , , . , 0F Du u x b x u x Du x c x u x                    …  (1) 
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Equation (1) can be written as 

                                             , , , . ,F p z x b x z p c x z   

Now                                 ,pD F b x z  

Thus the characteristic equations becomes 

                                                ,pX s D F b X s z s   

and                                     .pz s D F p  

                                                    
      

    

, .

,

b X s z s p s

c X s z s



 
 

Consequently 

      

                           
      
      

,

,

X s b X s z s

z s c X s z s

 


 

         ..(2) 

are the characteristic equations for the quasilinear first order PDE (1). 

Example 6: Consider a boundary-value problem for a semilinear PDE 

                                          
1 2

2

x xu u u in U

onu g

  



          …(3) 

where U is half-space   2 20 0x and x U      . 

Solution: Comparing (3) with (1), we have 

                                                   1,1b  and 2c z   

Then (2) becomes 

                                                
1 2

2

1, 1x x

z z

  



 

Consequently 

                                                 

   

 
 
 

1 0 2

00

0 0

,

1 1

x s x s x s s

g xz
z s

sz sg x

   



 
 
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where
0 , 0x R s  , provided the denominator is not zero. 

Fix a point  1 2,x x U . We select 0s  and 0x R , so that         1 2 0

1 2, , ,x x x s x s x s s    

i.e.
0

1 2 2,x x x s x   . 

Then 

                                                         
 
 

0

1 2

1 2 0
, ,

1

g x
u x x u x s x s z s

sg x
  


 

                                                                   
 

 
 1 2

2 1 2

2 1 2

,1 0
1

g x x
x g x x

x g x x


   

 
         

which is the required solution. 

(c ) In this case, we will discuss about characteristics equation of fully nonlinear PDE. 

Example 7: Consider the fully nonlinear problem 

                                                
1 2

2

2

x xu u u in U

onu x





     ..(1) 

where    1 10 , 0U x x U        

Here   1 2, ,F p z x p p z  . Then the characteristic equations becomes 

                                                       

1 1 2 2

1 2

1 2 2 1

,

2

,

p p p p

z p p

x p x p

  



  

 

We integrate these equations and we find 

                                     

       

   
   

1 0 2 0 0

2 1

0 0 0 2

1 2

1 0 2 0

1 2

1 , 1

1

,

s s

s

s s

x s p e x s x p e

z s z p p e

p s p e p s p e

     



  


 

 

Since
2

2u x  on  ,  
2

0 0 0

2 0, 2xp u x x  . 

Therefore, the PDE
1 2x xu u u itself implies  

2
0 0 0 0

1 2p p z x  , and so

0
0

1
2

x
p  . 

Thus we have, 
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       

   

   

0
1 0 2

2
0 2

0
1 2 0

2 1 , 1
2

, 2
2

s s

s

s s

x
x s x e x s e

z s x e

x
p s e p s x e


   






  


 

Fix a point  1 2,x x U . Choose s and 0x so that 
0

1 2 0

1 2( , ) ( ( ), ( )) (2 ( 1), ( 1))
2

s sx
x x x s x s x e e     

and so 

                                                              
2

1 2 0 2

1 2, , su x x u x s x s z s x e    

                                                                    
 

2

1 24

16

x x
   

Exercise: 

1. Find the characteristics of the following equations: 

(a) 
1 21 2 1 1

2 , ( ,1) ( )
x x

x u x u u u x g x     

(b) . (0, ), , ( , )n n

t
u b Du f in R b R f f x t        

2. Prove that the characteristics for the Hamiltonian-Jacobi equation 

 ( , ) 0
t

u H Du x    

are  

      

             

      

,

, . ,

,

x

p

p

p s D H p s x s

z s D H p s x s p s H p s x s

x s D H p s x s

 

 



 

5.4 Hamilton-Jacobi Equation 

The initial-value problem for the Hamilton-Jacobi equation is 

                                                       
   

 

0,0

0

n

t

n

in Ru H Du

on R tu g

   


 
 

Here  : 0,nu R R   is the unknown,  ,u u x t , and  
1
,...,

nx x xDu D u u u  . The Hamiltonian

: nH R R and the initial function : ng R R  are given. 

Note: Two characteristic equations associated with the Hamilton-Jacobi PDE 

                                                           , 0tu H Du x   
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are Hamilton’s ODE 

                                                          
 

 

( ), ( )

( ), ( )

p

x

x D H p s x s

p D H p s x s





  


 

which arise in the classical calculus of variations and in mechanics. 

5.4.1 Derivation of Hamilton’s ODE from a Variational Principle (Calculus of Variation) 

Article: Suppose that : n nL R R R  is a given smooth function, which is called Lagrangian.  

We write 

                                                            1 1, ,..., , ,...,n nL L q x L q q x x   

and 

                                                          

...

1

...

1

D L L L
q q q

n

D L L L
x x x

n

  
  
   


 

    
 

 

Where , nq x R  

For any two fix points , nx y R and a time 0t  and we introduce the action functional 

                                                               
0

. ,

t

I w L w s w s ds                            …  (2) 

where the functions         1 2. . , . ,..., .nw w w w belonging to the admissible class 

                                                                  2. 0, ; 0 ,nA w C t R w y w t x     

Thus, a 2C curve  .w belongs to A if it starts at the point y at time 0 and reaches the point x at time t. 

According to the calculus of variations, we shall find a parametric curve  .x A such that 

                                                               
 

 
.

. min .
w A

I x I w


                                            … (3) 

i.e., we are seeking a function  .x which minimizes the functional  .I among all admissible candidates

 .w A . 
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5.4.2 Theorem: Euler-Lagrange Equations 

Prove that any minimizer  .x A of  I  solves the system of Euler-Lagrange equations 

    (4)                                                             ,q x

d
D L x s x s D L x s

ds
              0 s t   

Proof: Consider a smooth function  : 0, nv t R satisfying 

                                                                       0 0v v t                                 …  (5) 

and  1,..., nv v v  

For c R , we define 

                                                                      . . .w x cv                                …  (6) 

Then,  .w belongs to the admissible class A and  .x being the minimizer of the action functional and so 

                                                                    . .I x I w        

Therefore the real-valued function 

                                                                       . .i c I x cv     

Has a minimizer at 0c  and consequently 

                                                                    ' 0 0i                                                   … (7) 

provided  ' 0i exists. 

Next we shall compute this derivative explicitly and we get 

                                                        
0

,

t

i c L x s cv s x s cv s ds    

And differentiating above equation w.r.t. c, we obtain 

                                                   
10

' , ,
i i

t n
i i

q x

i

i c L x cv x cv v L x cv x cv v ds


       

Set 0c  and using (7), we have 

                                                     
10

0 ' 0 , ,
i i

t n
i i

q x

i

i L x x v L x x v ds


                        …(8) 

Now we integrate (8) by parts in the first term inside the integral and using (5), we have 
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                                                  
1 0

0 , ,
i i

tn
i

q x

i

d
L x x L x x v ds

ds

 
   

 
  

This identity is valid for all smooth functions  1,..., nv v v satisfying (5) and so 

                                                           , , 0
i iq x

d
L x x L x x

ds
    

for 0 , 1,...,s t i n    

Remark: We see that any minimizer  .x A of  .I solves the Euler-Lagrange system of ODE. It is also 

possible that a curve  .x A may solve the Euler-Lagrange equations without necessarily being a 

minimizer, in this case  .x is a critical point of  .I . So, we can conclude that every minimizer is a critical 

point but a critical point need not be a minimizer. 

5.4.3 Hamilton’s ODE: 

Suppose 2C function  .x is a critical point of the action functional and solves the Euler-Lagrange equations. 

Set 

(1)                                               ,qp s D L x s x s          0 s t   

where  .p is called the generalized momentum corresponding to the position  .x
 
and velocity  .x . 

Now we make important hypothesis: 

(2) Hypothesis: Suppose for all , nx p R  that the equation  

 ,qp D L q x  

can be uniquely solved for q as a smooth function of p and x,  ,q q p x   

Definition: The Hamiltonian H associated with the Lagrangian L is 

                                                               , . , , ,H p x p q p x L q p x x                , np x R  

where the function  .,.q is defined implicitly by (2). 

Example: The Hamiltonian corresponding to the Lagrangian    
21

,
2

L q x m q x  is 

                                                              
21

,
2

H p x p x
m

   

The Hamiltonian is thus the total energy and the Lagrangian is the difference between the kinetic and 

potential energy. 
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5.4.4 Theorem:  Derivative of Hamilton’s ODE 

The functions  .x and  .p  satisfy Hamilton’s equations 

      (3)                                                
      
      

,

,

p

x

x s D H p s x s

p s D H p s x s

 


 

      (0 )s t   

Furthermore, the mapping     ,s H p s x s is constant. 

Proof: From (1) and (2), we have 

                                                                ,x s q p s x s  

Let us write       1. . ,..., .nq q q  

We compute for 1,...,i n  

                                                       
1

, , , , ,
k kn

k

ki i k i i

H q L q L
p x p p x q x p x q x

x x q x x

    
  

    
  

                                                                  ,
i

L
q x

x


 


             (using (2)) 

and                                                
1

, , , , ,
k kn

i

k

ki i k i

H q L q
p x q p x p p x q x p x

x p q p

   
  

   
  

                                                                 ,iq p x                     (again using (2)) 

Thus 

                                                        , ,i i

i

H
p s x s q p s x s x s

p


 


 

   and                                              , , , ,
i i i

H L L
p s x s q p s x s x s x s x s

x x x

  
   

  
 

                                                                            
    

 

,
i

i

d L
x s x s

ds q

p s

 
   

 

 

 

Hence 

                                                
1

,
n

i i

i i i

d H H
H p s x s p x

ds p x

 
 

 
  
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1

0
n

i i i i i

H H H H

p x x p

      
     

      
  

which shows that the mapping ( ( ), ( ))s H p s x s  is constant. 

5.5 Legendre transform: 

Assume that the Lagrangian : nL R R satisfies following conditions 

(i) the mapping  q L q is convex                                                             …(1) 

(ii) 
 

lim
q

L q

q
                                                                                           … (2) 

whose convexity of the mapping in equation (2) implies L is continuous. 

Note: In equation (2), we simplify the Lagrangian by dropping the x-dependence in the Hamiltonian so 

that afterwards H=H(p).   

Definition: The Legendre transform of L is 

        (3)                                          * sup .
nq R

L p p q L q


         np R  

Remark: Hamiltonian H is the Legendre transform of L, and vice versa: 

                                              *, *L H H L                                                …  (4)               

We say H and L are dual convex functions. 

Theorem: Convex duality of Hamiltonian and Lagrangian 

Assume L satisfies (1),(2) and define H by (3),(4) 

(i)Then 

                                        the mapping  p H p is convex 

And 

                                           
 

lim
p

H p

p
   

(ii)Furthermore 

                                            *L H                                                   … (5) 

Proof: For each fixed q , the function  .p p q L q is linear, and the mapping 

                                                   * sup .
nq R

p H p L p p q L q


     is convex. 

Indeed, if ˆ0 1, . np p R   , 
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                                                        ˆ ˆ1 sup 1 .H p p p p q L q          

                                                                                       ˆsup . 1 sup .
q

p q L q p q L q       

                                                                                     ˆ1H p H p     

Fix any 0, 0p   . Then 

                                                 sup .
nq R

H p p q L q


   

                                                         
p

p L
p

 
 

    
 

         
p

q
p


 

  
 

 

                                                        
 0,

max
B

p L


   

Therefore, 
 

lim inf
p

H p

p



  for all 0   

From (4), we have 

                                                  .H p L q p q                   , np q R   

and 

                                                sup . *
np R

L q p q H p H q


  

 

On the other hand 

                                                * sup . sup .
np R

H q p q p r L r


    

                                                              sup inf .
n

n r Rp R

p q r L r


                           …  (6) 

since  q L q is convex. 

Let there exists ns R such that 

                                              .L r L q s r q             nr R  

Taking p=s in (6) 

                                                   * inf .
nr R

H q s q r L r L q


     
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5.6 Hopf-Lax Formula 

Consider the initial-value problem for the Hamilton-Jacobi equation 

                                               
   

 

0 0,

0

n

t

n

u H Du in R

u g on R t

    


  
                                       … (1) 

We know that the calculus of variations problem with Lagrangian leads to Hamilton’s ODE for the 

associated Hamilton H. Hence these ODE are also the characteristic equations of the Hamilton-Jacobi 

PDE, we infer there is probably a direct connection between this PDE and the calculus of variations. 

Theorem: If nx R and 0t  , then the solution  ,u u x t of the minimization problem 

                                       
0

, inf 0 ,

t

u x t L w s ds g y w y w t x
 

    
 
                    …  (2) 

  is 

                                                  , min
x y

u x t tL g y
t

   
   

  
                                          … (3) 

where, the infimum is taken over all C1 functions. The expression on the right hand side of (3) called 

Hopf-Lax formula. 

Proof: Fix any
ny R and define 

                                                   
s

w s y x y
t

              0 s t   

Then (0) and ( )w y w t y    

The expression (2) of u implies 

                                                   
0

,

t
x y

u x t L w s ds g y tL g y
t

 
    

 
  

and therefore 

                                              , inf
ny R

x y
u x t tL g y

t

   
   

  
 

If  .w is any 1C function satisfying  w t x , then we have 

                                                
0 0

1 1
t t

L w s ds L w s ds
t t

 
 

 
                      (by Jensen’s inequality) 

Thus if we write  0y w , we find 
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                                                 
0

t
x y

tL g y L w s ds g y
t

 
   

 
  

and consequently 

                                               inf ,
ny R

x y
tL g y u x t

t

   
   

  
 

Hence 

                                             , inf
ny R

x y
u x t tL g y

t

   
   

    

Lemma 1: (A functional identity) 

 For each nx R and 0 s t  , we have 

                                         , min ,
ny R

x y
u x t t s L u y s

t s

   
    

  
                  …  (1) 

In other words, to compute  .,u t , we can calculate u at time s and then use  .,u s as the initial condition 

on the remaining time interval  ,s t . 

Proof:  Fix ,0ny R s t   and choose nz R so that 

                                          ,
y z

u y s sL g z
s

 
  

 
                                            …  (2) 

Now since L is convex and 1
x z s x y s y z

t t t s t s

    
    

  
, we have 

                                         1
x z s x y s y z

L L L
t t t s t s

         
         

       
 

Thus  

                                   ,
x z x y y z

u x t tL g z t s L sL g z
t t s s

       
          

     
 

                                                                                  ,
x y

t s L u y s
t s

 
   

 
 

By (2). This inequality is true for each
ny R . Therefore, since  ,y u y s is continuous, we have 

                                                , min ,
ny R

x y
u x t t s L u y s

t s

   
    

  
                       …. (3) 
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Now choose w such that 

                                                             ,
x w

u x t tL g w
t

 
  

 
                                   …(4) 

and set : 1
s s

y x w
t t

 
   

 
. Then

x y x w y w

t s t s

  
 


. 

Consequently 

                                     ,
x y

t s L u y s
t s

 
  

 
 

                                                                      
x w y w

t s L sL g w
t s

    
      

   
    

                                                                      ,
x w

tL g w u x t
t

 
   

 
 

By (4). Hence 

                                 min , ,
ny R

x y
t s L u y s u x t

t s

   
    

  
                           …(5) 

Lemma 2: (Lipschitz continuity) 

The function u is Lipschitz continuous in  0,nR   , and  u g  on  0nR t  . 

Proof: Fix ˆ0, , nt x x R  . Choose
ny R such that 

                                                               ,
x y

tL g y u x t
t

 
  

 
                             ….(6) 

Then 

                                  
ˆ

ˆ, , inf
z

x z x y
u x t u x t tL g z tL g y

t t

      
        

    
 

                                                              ˆ ˆg x x y g y Lip g x x       

Hence  

                                                             ˆ ˆ, ,u x t u x t Lip g x x    

and, interchanging the roles of x̂ and x , we find 

                                                            ˆ ˆ, ,u x t u x t Lip g x x                                 … (7) 
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Now select nx R , t>0. Choosing y x  in (*), we discover 

                                                          , 0u x t tL g x                                                     …(8) 

Furthermore,  

                            , min
ny R

x y
u x t tL g y

t

   
   

  
 

                                          min
ny R

x y
g x Lip g x y tL

t

   
      

  
 

                                             max
nz R

g x t Lip g z L z


                  
x y

z
t

 
 

 
 

                                       
  

  
0,

max max .
nw B Lip g z R

g x t w z L z
 

                            

                                        
  0,

max
B Lip g

g x t H   

This inequality and (8) imply 

                                                   ,u x t g x Ct   

For 

                                            C:=  
  0,

max 0 , max
B Lip g

L H
 
 
 

                                      … (9) 

Finally select ˆ,0nx R t t   . Then     .,Lip u t Lip g  by (7) above. Consequently Lemma 1 and 

calculations like those employed in step 2 above imply 

                                                    ˆ ˆ, ,u x t u x t C t t    

For the constant C defined by (9). 

Theorem:  Solving the Hamilton-Jacobi equation 

 Suppose , 0nx R t  , and u defined by the Hopf-Lax formula 

   , min
ny R

x y
u x t tL g y

t

   
   

  
  

is differentiable at a point    , 0,nx t R   . Then 

                                                                               , , 0tu x t H Du x t  . 
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Proof: Fix , 0nq R h  . Owing to Lemma 1, 

                              , min ,
ny R

x hq y
u x hq t h hL u y t

h

    
     

  
 

                                                            ,hL q u x t  . 

Hence 

                                                   
   

 
, ,u x hq t h u x t

L q
h

  
 . 

Let 0h  , to compute 

                                                      . , ,tq Du x t u x t L q  . 

This inequality is valid for all
nq R , and so 

                            , , , max . , 0
nt t

q R
u x t H Du x t u x t q Du x t L q



                                …(10) 

The first equality holds since *H L . 

Now choose z such that    ,
x z

u x t tL g z
t

 
  

 
. Fix h>0 and set , 1

s s
s t h y x z

t t

 
     

 
. 

Then 
x z y z

t s

 
 , and thus 

                                               , ,
x z y z

u x t u y s tL g z sL g z
t s

      
        

    
 

                                                                         
x z

t s L
t

 
   

 
 

That is, 

                                            

 , 1 ,
h h

u x t u x z t h
t t x z

L
h t

  
     

      
 

 

Let 0h  to compute 

                                               . , ,t

x z x z
Du x t u x t L

t t

  
   

 
 

Consequently 

                                          , , , max . ,
nt t

q R
u x t H Du x t u x t q Du x t L q



     

                                                                           
   , . ,

0

t

x z x z
u x t Du x t L

t t

  
    

 



 

This inequality and (10) complete the proof. 
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Lemma 3: (Semiconcavity) 

 Suppose there exists a constant C such that 

                                                        
2

2g x z g x g x z C z                                                  (11) 

for all , nx z R . Define u by the Hopf-Lax formula (*). Then 

                                                         
2

, 2 , ,u x z t u x t u x z t C z      

for all , , 0nx z R t  . 

Remark: We say g is semiconcave provided (11) holds. It is easy to check (11) is valid if g is 2C  and

2sup
nR

D g  . Note that g is semiconcave if and only if the mapping  
2

2

C
x g x x  is concave for some 

constant C. 

Proof: Choose
ny R  so that    ,

x y
u x t tL g y

t

 
  

 
. Then putting y z  and y z in the Hopf-Lax 

formulas for  ,u x z t and  ,u x z t , we find 

                                         , 2 , ,u x z t u x t u x z t     

                                                            2
x y x y

tL g y z tL g y
t t

        
          

      
 

                                                                       
x y

tL g y z
t

   
    

  
 

                                                             2g y z g y g y z      

                                                        
2

C z ,        by (11) 

Definition: A 2C convex function : nH R R is called uniformly convex(with constant 0  ) if 

   (12)                                             
2

, 1
i j

n

p p i j

i j

H p    


                    for all , np R                      

We now prove that even if g is not semi-concave, the uniform convexity of H forces u to become semi-

concave for times t>0: it is a kind of mild regularizing effect for the Hopf-Lax solution of the initial- value 

problem. 
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Lemma 4: (Semi-concavity Again) 

Suppose that H is uniformly convex (with constant ) and u is defined by the Hopf-Lax formula. Then 

                                               
21

, 2 , ,u x z t u x t u x z t z
t

      

for all , , 0nx z R t  . 

Proof: We note first using Taylor’s formula that (12) implies 

                                               
21 2

1 2 1 2

1 1

2 2 2 8

p p
H H p H p p p

 
    

 
                            (13) 

Next we claim that for the Lagrangian L, we have estimate 

                                               
21 2

1 2 1 2

1 1 1

2 2 2 8

q q
L q L q L q q



 
    

 
                                 (14) 

For all 1 2, nq q R . Verification is left as an exercise. 

Now choose y so that    ,
x y

u x t tL g y
t

 
  

 
. Then using the same value of y in the Hopf-Lax formulas 

for  ,u x z t and  ,u x z t , we calculate 

                               , 2 , ,u x z t u x t u x z t     

                                                 2
x z y x y

tL g y tL g y
t t

         
         

      
 

                                                              
x z y

tL g y
t

    
   

  
 

                                             
1 1

2
2 2

x z y x z y x y
t L L L

t t t

           
        

      
 

                                            

2
21 2 1

2
8

z
t z

t t 
  , 

The next-to-last inequality following from (14). 

Theorem:  Suppose , 0nx R t  , and u defined by the Hopf-Lax formula is differentiable at a point

   , 0,nx t R   . Then 

                                                , , 0tu x t H Du x t   
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Proof: Fix , 0nq R h  and using Lemma (1), then we have 

                                                  , min ,
ny R

x hq y
u x hq t h hL u y t

h

    
     

  
 

                                                                             ,hL q u x t   

Hence 

                                             
   

 
, ,u x hq t h u x t

L q
h

  
  

Let 0h  , to compute 

                                                   . , ,tq Du x t u x t L q              for all
nq R  

and therefore 

                                                          , , , max . , 0
nt t

q R
u x t H Du x t u x t q Du x t L q



      

The first equality holds since *H L  

Now choose z such that 

                                                   ,
x z

u x t tL g z
t

 
  

 
 

Fix h>0 and set 

                                                , 1
s s

s t h y x z
t t

 
     

 
 

Then                                       
x z y z

t s

 
  

and 

                                                        , ,
x z y z

u x t u y s tL g z sL g z
t s

      
        

    
 

                                                                              
x z

t s L
t

 
   

 
 

                                              

 , 1 ,
h h

u x t u x z t h
t t x z

L
h t

  
     

      
 

 

Let 0h  to compute 
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                                                   . , ,t

x z x z
Du x t u x t L

t t

  
   

 
 

Consequently 

                                                          , , , max . ,
nt t

q R
u x t H Du x t u x t q Du x t L q



     

                                                                                        
   , . ,

0

t

x z x z
u x t Du x t L

t t

  
    

 



 

Hence                                         , , 0tu x t H Du x t   

5 .7 Weak Solutions and Uniqueness 

Definition: We say that a Lipschitz Continuous function  : 0,nu R R   is a weak solution of the 

initial-value problem 

(15)                                                   
   

 

0 0,

0

n

t

n

u H Du in R

u g on R t

    


  
 

provided 

(a)    ,0u x g x           nx R  

(b)         , , 0 . . , 0,n

tu x t H Du x t for a e x t R      

(c)      
21

, , , 1u x z t zu x t u x z t c z
t

 
      

 
 

for some constant 0c  and all , , 0nx z R t  . 

Theorem:  Uniqueness of Weak Solution 

 Assume H is 2C and satisfies  
lim
p

H is convex and

H p

p





 


 and : ng R R
 is Lipschitz continuous. Then there 

exists at most one weak solution of the initial-value problem (15). 

Proof: Suppose thatu andu are two weak solutions of (15) and write :w u u  . 

Observe now at any point  ,y s where bothu andu are differentiable and solve our PDE, we have 

                                  , , ,t t tw y s u y s u y s   
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     

      
1

0

, ,

, 1 ,

H Du y s H Du y s

d
H rDu y s r Du y s dr

dr

  

   
 

                                                       
1

0

, 1 , . , ,DH rDu y s r Du y s dr Du y s Du y s      

                                              : , . ,b y s Dw y s   

Consequently 

                                          . 0tw b Dw      a.e.                                           … (16) 

Write  : 0v w  , where  : 0,R  
 
is a smooth function to be selected later. We multiply(16) by

 ' w to discover 

                                                 . 0tv b Dv            a.e.                                       …(17) 

Now choose 0  and define : * , : *u u u u 

    , where  is the standard mollifier in the x and t 

variables. Then we have 

                                                  ,Du Lip u Du Lip u   ,                     … (18) 

and                   

                                          ,Du Du Du Du     a.e., as 0                           …(19) 

Furthermore inequality(c) in the definition of weak solution implies 

                                               
2 2 1

, 1D u D u C I
s

   
  

 
 

For an appropriate constant C and all 0  , , 2ny R s   . Verification is left as an exercise. 

Write 

                                           
1

0

, : , 1 ,b y s DH rDu y s r Du y s dr 

                       … (20) 

Then (17) becomes 

                                          . .tv b Dv b b Dv                   a.e. 

Hence 

                                          .tv div vb divb v b b Dv         a.e.                                  …(21) 
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Now 

                        
1

, 10

1 1
k l l k l k

n

p p x x x x

k l

divb H rDu r Du ru r u dr   




    
   

                               
1

1C
s

 
  

 
                                                 …(22) 

For some constant C, in view of (17) and (19). Here we note that H convex implies 2 0D H  . 

Fix 0 0, 0nx R t  , and set 

                                 : max maxR DH p p Lip u                                             …(23) 

Define also the cone 

                                   0 0 0: , 0 ,C x t t t x x R t t       

Next write 

                                     
  0 0,

,
B x R t t

e t v x t dx


   

and compute for a.e. t>0: 

                            
     0 0 0 0, ,

t

B x R t t B x R t t

e t v dx R vdS
  

    

                                       
  

 
0 0,

.
B x R t t

div vb divb v b b Dvdx  



      

                                                
  0 0,B x R t t

R vdS
 

                           by (21) 

                                      
  0 0,

.
B x R t t

v b v R dS

 

    

                                                     
  0 0,

.
B x R t t

divb v b b Dvdx 



    

                                          
  0 0,

.
B x R t t

divb v b b Dvdx 



                       by (17),  (20) 

                                         
  0 0,

1
1 .

B x R t t

C e t b b Dvdx
t





 
    

 
  
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by (22). The last term on the right hand side goes to zero as 0  , for a.e. 0 0t  , according to (17), (18) 

and the Dominated Convergence Theorem. 

Thus 

     (24)                                             
1

1e t C e t
t

 
  

 
      for a.e. 00 t t   

Fix 0 r t   and choose the function  z to equal zero if 

                                                            z Lip u Lip u     

and to be positive otherwise. Since u u on  0nR t  , 

                                                    0v w u u        at t   

Thus   0e   . Consequently Gronwall’s inequality and (24) imply 

                                                               

1
1

0

r

C dS
s

e r e e

 
 

 
   

Hence 

                                                   u u Lip u Lip u         on   0 0,B x R t r  

This inequality is valid for all 0  , and sou u in   0 0,B x R t r . Therefore, in particular,

   0 0 0 0, ,u x t u x t .     


